The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC.
Mast cells (MCs) are a part of the innate immune system. The MC functions toward cancer are partially based on the release of chymase and tryptase. However, the MC effect on breast cancer is controversial. The aim of our study was to investigate the presence of MCs in breast cancer tumors of different molecular subtypes and their relationships with other pathological prognostic factors. Tryptase- and chymase-positive mast cell densities were evaluated by immunohistochemistry in 108 primary invasive breast cancer tissue samples. Positive cells were counted within the tumor bed and at the invasive margin. For all analyzed MC subpopulations, we observed statistically significant differences between individual molecular subtypes of breast cancer. The significantly higher numbers of intratumoral chymase- and tryptase-positive mast cells were observed in luminal A and luminal B tumors compared to triple-negative and HER2+ non-luminal lesions. A denser MC infiltration was associated with lower tumor grade, higher ER and PR expression, lower proliferation rate as well as the lack of HER2 overexpression. The results obtained in our study indicate a possible association of chymase- and tryptase-positive MCs with more favorable cancer immunophenotype and with beneficial prognostic indicators in breast cancer.
Mesothelin (MSLN) is a glycophosphatidylinositol (GPI)-linked cell surface protein highly expressed in several types of malignant tumors sometimes in association with increased tumor aggressiveness and poor clinical outcome. In the present study, 1562 tumors were immunohistochemically analyzed for mesothelin expression using two different types of mouse monoclonal antibodies (5B2 and MN-1) to determine the clinical usefulness of mesothelin immunohistochemistry as well as to pinpoint potential targets for future anti-mesothelin therapy. Also, characterization of selected mesothelin-positive tumors was performed by immunohistochemistry and oncogene sequencing. Among the tumors analyzed, the highest frequencies of mesothelin-positivity were detected in ovarian serous carcinoma (90% in 5B2 and 94% in MN-1). Both antibodies showed frequent positivity in pancreatic adenocarcinoma (71% using 5B2 and 87% using MN-1) and malignant pleural mesothelioma (75% using 5B2 and 78% using MN-1). In malignant mesothelioma, overall survival was significantly longer in the cohort of patients with diffuse membranous expression of mesothelin (P < 0.001). Both antibodies showed positive staining in thymic carcinoma (77% in 5B2 and 59% in MN-1), however, no expression was detected in thymoma. No correlation was detected between mesothelin expression and mismatch repair system deficient phenotype or gene mutation (BRAF and RAS) status in gastrointestinal adenocarcinomas. Mesothelin immunohistochemistry may assist the differential diagnosis of thymoma vs. thymic carcinoma as well as prognostication of mesothelioma patients. Our results demonstrate that patients with solid tumors expressing mesothelin could be targeted by anti-mesothelin therapies.
Diffuse malignant mesothelioma of the pleura is a highly aggressive tumor typically associated with short survival. ALCAM (CD166), a type I transmembrane protein, is a member of the immunoglobulin superfamily. In normal cells, ALCAM regulates physiological processes such as angiogenesis and immune response. In cancer, it is associated with neoplastic progression, including invasion, migration, and metastasis. Furthermore, ALCAM is considered one of the cancer stem cell markers such as ALDH1 (ALDH1A1) and SALL4. The PD-L1 (CD274)/PD-1 (PDCD1, CD279) pathway is crucial for the modulation of immune responses in normal cells. Nevertheless, pathologic activation of the PD-L1/PD-1 pathway participates in immune evasion by tumor cells. Many PD-L1-expressing tumor cells have been identified in different types of cancer, including malignant mesothelioma. In this study, 175 well-characterized primary diffuse pleural mesotheliomas, including the epithelioid (n = 148), biphasic (n = 15), and sarcomatoid (n = 12) histotypes, were evaluated immunohistochemically for cancer stem cell markers (ALCAM, ALDH1, and SALL4) and PD-L1 expression. Twenty-five percent of the mesotheliomas (43/175) expressed ALCAM, whereas ALDH1 and SALL4 positivity was seen in 1% to 2% of cases. Thirty-three percent of the analyzed tumors (57/175) contained PD-L1-positive cells. Overall survival was significantly decreased in the cohort of patients with ALCAM- or PD-L1-positive tumors (both P < .01). Furthermore, the multivariate Cox hazards regression analysis identified ALCAM and PD-L1 (both P < 0.01) as potential independent risk factors. Thus, a combination of these 2 markers might be useful for prognostication and planning the treatment of patients with malignant pleural mesothelioma.
Diffuse malignant mesothelioma of the pleura (MPM) is a highly aggressive tumour that typically is associated with short survival. CD70 and CD27 belong to the tumour necrosis factor (TNF) and the TNF receptor (TNFR) superfamily, respectively. Under physiological conditions, the tightly regulated interaction between CD70 and CD27 plays a co-stimulatory role in promoting T-cell expansion and differentiation through the NFB pathway. Aberrantly high CD70 expression has been documented in haematological and solid malignancies in association with immune evasion in malignant cells. In this study, 172 well-characterised primary diffuse MPM tumours including epithelioid (n = 145), biphasic (n = 15), and sarcomatoid (n = 12) histotypes were evaluated immunohistochemically for CD70, CD27, CD3, CD4, CD8, CD56, PDCD1 (PD-1), and FOXP3 expression. Twenty per cent (34/172) of the mesothelioma cells expressed CD70 on the cell membrane. Overall survival was significantly decreased in the cohort of patients with CD70-expressing tumour cells (p < 0.01). Patients with MPM containing a higher number of CD3 + (p < 0.01), CD4 + (p < 0.01), CD8 + (p < 0.01), or FOXP3 + (p < 0.01) tumour-infiltrating lymphoid cells (TILs) showed significantly worse clinical outcomes. As potential independent risk factors for MPM patients, multivariate Cox proportional hazards regression analysis revealed CD70 expression on mesothelioma cells [hazard ratio (HR) 2.25; p = 0.010], higher FOXP3 + TILs (HR 2.81; p = 0.004), and higher CD3 + TIL accumulation (HR 6.12; p < 0.001). In contrast, as a potential independent favourable factor, higher CD27 + TIL accumulation (HR 0.48; p = 0.037) was identified. In vitro experiments and an immunodeficient mouse model revealed that CD70 enhances the invasiveness of MPM cells through MET-ERK axis activation. Further analyses in syngeneic mouse models demonstrated possible roles for CD70 in immune evasion. Collectively, these findings suggest that the CD70-CD27 pathway enhances the malignant phenotypes of MPM and diminishes anti-tumor immune response in patients with these neoplasms. These markers might be useful in MPM for prognostic evaluations as well as targeted therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.