BackgroundVHL inactivation is the most established molecular characteristic of clear cell renal cell carcinoma (ccRCC), with only a few additional genes implicated in development of this kidney tumor. In recently published ccRCC gene expression meta-analysis study we identified a number of deregulated genes with limited information available concerning their biological role, represented by gene transcripts belonging to transmembrane proteins family (TMEMs). TMEMs are predicted to be components of cellular membranes, such as mitochondrial membranes, ER, lysosomes and Golgi apparatus. Interestingly, the function of majority of TMEMs remains unclear. Here, we analyzed expression of ten TMEM genes in the context of ccRCC progression and development, and characterized these proteins bioinformatically.MethodsThe expression of ten TMEMs (RTP3, SLC35G2, TMEM30B, TMEM45A, TMEM45B, TMEM61, TMEM72, TMEM116, TMEM207 and TMEM213) was measured by qPCR. T-test, Pearson correlation, univariate and multivariate logistic and Cox regression were used in statistical analysis. The topology of studied proteins was predicted with Metaserver, together with PSORTII, Pfam and Localizome tools.ResultsWe observed significant deregulation of expression of 10 analyzed TMEMs in ccRCC tumors. Cluster analysis of expression data suggested the down-regulation of all tested TMEMs to be a descriptor of the most advanced tumors. Logistic and Cox regression potentially linked TMEM expression to clinical parameters such as: metastasis, Fuhrman grade and overall survival. Topology predictions classified majority of analyzed TMEMs as type 3 and type 1 transmembrane proteins, with predicted localization mainly in ER.ConclusionsThe massive down-regulation of expression of TMEM family members suggests their importance in the pathogenesis of ccRCC and the bioinformatic analysis of TMEM topology implies a significant involvement of ER proteins in ccRCC pathology.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1530-4) contains supplementary material, which is available to authorized users.
Trace amine-associated receptor 1 (Taar1) has been suggested as putative receptor of thyronamines. These are aminergic messengers with potential metabolic and neurological effects countering their contingent precursors, the thyroid hormones (THs). Recently, we found Taar1 to be localized at the primary cilia of rodent thyroid epithelial cells in vitro and in situ. Thus, Taar1 is present in a location of thyroid follicles where it might be involved in regulation of cathepsin-mediated proteolytic processing of thyroglobulin, and consequently TH synthesis. In this study, taar1 knock-out male mice (taar1-/-) were used to determine whether Taar1 function would entail differential alterations in thyroid states of young and adult animals. Analyses of blood serum revealed unaltered T4 and T3 concentrations and unaltered T3-over-T4 ratios upon Taar1 deficiency accompanied, however, by elevated TSH concentrations. Interestingly, TSH receptors, typically localized at the basolateral plasma membrane domain of wild type controls, were located at vesicular membranes in thyrocytes of taar1-/- mice. In addition, determination of epithelial extensions in taar1-/- thyroids showed prismatic cells, which might indicate activation states higher than in the wild type. While gross degradation of thyroglobulin was comparable to controls, deregulated thyroglobulin turnover in taar1-/- mice was indicated by luminal accumulation of covalently cross-linked thyroglobulin storage forms. These findings were in line with decreased proteolytic activities of thyroglobulin-solubilizing and -processing proteases, due to upregulated cystatins acting as their endogenous inhibitors in situ. In conclusion, Taar1-deficient mice are hyperthyrotropinemic in the absence of respective signs of primary hypothyroidism such as changes in body weight or TH concentrations in blood serum. Thyrocytes of taar1-/- mice are characterized by non-canonical TSH receptor localization in intracellular compartments, which is accompanied by altered thyroglobulin turnover due to a disbalanced proteolytic network. These finding are of significance considering the rising popularity of using TAAR1 agonists or antagonists as neuromodulating pharmacological drugs. Our study highlights the importance of further evaluating potential off-target effects regarding TSH receptor mislocalization and the thyroglobulin processing machinery, which may not only affect the TH-generating thyroid gland, but may emanate to other TH target organs like the CNS dependent on their proper supply.
Background: The trace amine-associated receptor 1 (Taar1) is one member of the Taar family of G-protein-coupled receptors (GPCR) accepting various biogenic amines as ligands. It has been proposed that Taar1 mediates rapid, membrane-initiated effects of thyronamines, the endogenous decarboxylated and deiodinated relatives of the classical thyroid hormones T4 and T3. Objectives: Although the physiological actions of thyronamines in general and 3-iodothyronamine (T1AM) in particular are incompletely understood, studies published to date suggest that synthetic T1AM-activated Taar1 signaling antagonizes thyromimetic effects exerted by T3. However, the location of Taar1 is currently unknown. Methods: To fill this gap in our knowledge we employed immunofluorescence microscopy and a polyclonal antibody to detect Taar1 protein expression in thyroid tissue from Fisher rats, wild-type and taar1-deficient mice, and in the polarized FRT cells. Results: With this approach we found that Taar1 is expressed in the membranes of subcellular compartments of the secretory pathway and on the apical plasma membrane of FRT cells. Three-dimensional analyses further revealed Taar1 immunoreactivity in cilial extensions of postconfluent FRT cell cultures that had formed follicle-like structures. Conclusions: The results suggest Taar1 transport along the secretory pathway and its accumulation in the primary cilium of thyrocytes. These findings are of significance considering the increasing interest in the role of cilia in harboring functional GPCR. We hypothesize that thyronamines can reach and activate Taar1 in thyroid follicular epithelia by acting from within the thyroid follicle lumen, their potential site of synthesis, as part of a nonclassical mechanism of thyroid autoregulation.
This mini-review asks how self-regulation of the thyroid gland is realized at the cellular and molecular levels by canonical and non-canonical means. Canonical pathways of thyroid regulation comprise thyroid stimulating hormone-triggered receptor signaling. As part of non-canonical regulation, we hypothesized an interplay between protease-mediated thyroglobulin processing and thyroid hormone release into the circulation by means of thyroid hormone transporters like Mct8. We proposed a sensing mechanism by different thyroid hormone transporters, present in specific subcellular locations of thyroid epithelial cells, selectively monitoring individual steps of thyroglobulin processing, and thus, the cellular thyroid hormone status. Indeed, we found that proteases and thyroid hormone transporters are functionally inter-connected, however, in a counter-intuitive manner fostering self-thyrotoxicity in particular in Mct8- and/or Mct10-deficient mice. Furthermore, the possible role of the G protein-coupled receptor Taar1 is discussed, because we detected Taar1 at cilia of the apical plasma membrane of thyrocytes in vitro and in situ. Eventually, through pheno-typing Taar1-deficient mice, we identified a co-regulatory role of Taar1 and the thyroid stimulating hormone receptors. Recently, we showed that inhibition of thyroglobulin-processing enzymes results in disappearance of cilia from the apical pole of thyrocytes, while Taar1 is re-located to the endoplasmic reticulum. This pathway features a connection between thyrotropin-stimulated secretion of proteases into the thyroid follicle lumen and substrate-mediated self-assisted control of initially peri-cellular thyroglobulin processing, before its reinternalization by endocytosis, followed by extensive endo-lysosomal liberation of thyroid hormones, which are then released from thyroid follicles by means of thyroid hormone transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.