Dutch-belted and New Zealand White rabbits were passively immunized with AVP-21D9, a human monoclonal antibody to protective antigen (PA), at the time of Bacillus anthracis spore challenge using either nasal instillation or aerosol challenge techniques. AVP-21D9 (10 mg/kg) completely protected both rabbit strains against lethal infection with Bacillus anthracis Ames spores, regardless of the inoculation method. Further, all but one of the passively immunized animals (23/24) were completely resistant to rechallenge with spores by either respiratory challenge method at 5 weeks after primary challenge. Analysis of the sera at 5 weeks after primary challenge showed that residual human anti-PA levels decreased by 85 to 95%, but low titers of rabbit-specific anti-PA titers were also measured. Both sources of anti-PA could have contributed to protection from rechallenge. In a subsequent study, bacteriological and histopathology analyses revealed that B. anthracis
The ability to protect mice against respiratory infections with virulent Francisella tularensis has been problematic and the role of antibody-versus-cell-mediated immunity controversial. In this study, we tested the hypothesis that protective immunity can develop in mice that were given antibiotic therapy following infection via the respiratory tract with Francisella tularensis SCHU S4. We show that mice infected with a lethal dose of SCHU S4, via an intra-nasal challenge, could be protected with levofloxacin treatment. This protection was evident even when levofloxacin treatment was delayed 72 hours post-infection. At early time points after levofloxacin treatment, significant numbers of bacteria could be recovered from the lungs and spleens of mice, which was followed by a dramatic disappearance of bacteria from these tissues. Mice successfully treated with levofloxacin were later shown to be almost completely resistant to rechallenge with SCHU S4 by the intra-nasal route. Serum antibody appeared to play an important role in this immunity. Normal mice, when given sera from animals protected by levofloxacin treatment, were solidly protected from a lethal intra-nasal challenge with SCHU S4. The protective antiserum contained high titers of SCHU S4 specific IgG2a, indicating that a strong Th1 response was induced following levofloxacin treatment. Thus, this study describes a potentially valuable animal model for furthering our understanding of respiratory tularemia and provides suggestive evidence that antibody can protect against respiratory infections with virulent F. tularensis.
The respiratory epithelium is a dynamic interface between the outside environment and the interior of the host (20, 56). Protection against respiratory infection is provided by the physical barrier formed by alveolar epithelial cells (AECs), which also are vital for maintaining lung homeostasis. AECs are abundant in number and line the pulmonary airways and alveoli. Alveolar type I (ATI) cells are the epithelial component of the thin air-blood barrier and comprise Ͼ95% of the alveolar surface area (57). Alveolar type II (ATII) cells cover approximately 4% of the mammalian alveolar surface but constitute 15% of all lung cells (8,9,20,35,57).
Successful treatment of inhalation anthrax, pneumonic plague and tularemia can be achieved with fluoroquinolone antibiotics, such as ciprofloxacin and levofloxacin, and initiation of treatment is most effective when administered as soon as possible following exposure. Bacillus anthracis Ames, Yersinia pestis CO92, and Francisella tularensis SCHU S4 have equivalent susceptibility in vitro to ciprofloxacin and levofloxacin (minimal inhibitory concentration is 0.03 μg/ml); however, limited information is available regarding in vivo susceptibility of these infectious agents to the fluoroquinolone antibiotics in small animal models. Mice, guinea pig, and rabbit models have been developed to evaluate the protective efficacy of antibiotic therapy against these life-threatening infections. Our results indicated that doses of ciprofloxacin and levofloxacin required to protect mice against inhalation anthrax were approximately 18-fold higher than the doses of levofloxacin required to protect against pneumonic plague and tularemia. Further, the critical period following aerosol exposure of mice to either B. anthracis spores or Y. pestis was 24 h, while mice challenged with F. tularensis could be effectively protected when treatment was delayed for as long as 72 h postchallenge. In addition, it was apparent that prolonged antibiotic treatment was important in the effective treatment of inhalation anthrax in mice, but short-term treatment of mice with pneumonic plague or tularemia infections were usually successful. These results provide effective antibiotic dosages in mice, guinea pigs, and rabbits and lay the foundation for the development and evaluation of combinational treatment modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.