Abdominal aortic aneurysm (AAA) is a permanent and localized aortic dilation, defined as aortic diameter ≥3 cm. It is an asymptomatic but potentially fatal condition because progressive enlargement of the abdominal aorta is spontaneously evolving towards rupture.Biomarkers may help to explain pathological processes of AAA expansion, and allow us to find novel therapeutic strategies or to determine the efficiency of current therapies. Metabolomics seems to be a good approach to find biomarkers of AAA. In this study, plasma samples of patients with large AAA, small AAA, and controls were fingerprinted with LC-QTOF-MS. Statistical analysis was used to compare metabolic fingerprints and select metabolites that showed a significant change. Results presented here reveal that LC-QTOF-MS based fingerprinting of plasma from AAA patients is a very good technique to distinguish small AAA, large AAA, and controls. With the use of validated PLS-DA models it was possible to classify patients according to the disease stage and predict properly the stage of additional AAA patients. Identified metabolites indicate a role for sphingolipids, lysophospholipids, cholesterol metabolites, and acylcarnitines in the development and progression of AAA. Moreover, guanidinosuccinic acid, which mimics nitric oxide in terms of its vasodilatory action, was found as a strong marker of large AAA.
The plasma of patients with stable carotid atherosclerosis (n = 9), and healthy subjects (n = 10) have been fingerprinted with both GC-MS and (1)H NMR. Principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA) have been applied to the profiles from each technique both separately and in combination. These techniques complement each other and enable a clearer picture of the biological samples to be interpreted not only for classification purposes, but also more importantly to define the metabolic state of patients with carotid atherosclerosis. The results showed at least 24 metabolites that were significantly modified in the group of atherosclerotic patients by this nontargeted procedure. Most of the changes can be associated to alterations of the metabolism characteristics of insulin resistance that can be strongly related to the metabolic syndrome. In addition, correlations among variables accounting for the classification show amino acids as variables whose changes showed a high degree of correlation. GC-MS and (1)H NMR fingerprints can provide complementary information in the identification of altered metabolic pathways in patients with carotid atherosclerosis. Moreover, correlations among the results with both techniques, instead of a single study, can provide a deeper insight into the patient state.
Propolis evokes several therapeutic properties, including anticancer activity. These activities are attributed to the action of polyphenols. Previously it has been demonstrated, that one of the most abundant polyphenolic compounds in ethanolic extracts of propolis are chrysin, caffeic acid, p-coumaric acid, and ferulic acid. Although their pro-apoptotic activity on human tongue squamous cell carcinoma cells (CAL-27) was established previously, the detailed mechanism of this process remains unclear. Considering the crucial role of proline metabolism and proline dehydrogenase/proline oxidase (PRODH/POX) in the regulation of cancer cell survival/apoptosis, we studied these processes in polyphenol-treated CAL-27 cells. All studied polyphenols evoked anti-proliferative activity, accompanied by increased PRODH/POX, P53, active caspases-3 and -9 expressions and decreased collagen biosynthesis, prolidase activity and proline concentration in CAL-27 cells. These data suggest that polyphenols of propolis induce PRODH/POX-dependent apoptosis through up-regulation of mitochondrial proline degradation and down-regulation of proline utilization for collagen biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.