The nutcracker Nucifraga caryocatactes belongs to a group of bird species that use their beak and tongue as tools for obtaining food, such as seeds from hard-to-reach cones or nuts from shells. The aim of the present study, carried out with a scanning electron microscope, was to define the morphological features of the tongue of the nutcracker, which seems to be adapted to its environment through specific methods of obtaining food. One of the characteristic features of the nutcracker's tongue is the unique structure of the anterior part of the tongue, which has two long and highly keratinized processes - a product of the renewable keratinized layer of the epithelium covering the ventral surface of the tongue. These dagger-like processes, which are a modified "lingual nail," take a major role in levering up and shelling seeds, which are transported over the short sulcus-shaped body of the tongue. A unique feature of the nutcracker's tongue is the groove separating the body from the root. Two rows of highly keratinized, mechanical, conical papillae are located at the junction of the body and the root. These papillae are mechanically protective elements for passing food particles in the form of seeds. Among lingual glands, only the posterior lingual glands on the root of the tongue have been observed. Their secretion agglutinates dry food before it is swallowed. Results of the present study indicate that the nutcracker's tongue is an efficient tool resembling a lever that is helpful in shelling seeds.
The sensitivity of taste in mammals varies due to quantitative and qualitative differences in the structure of the taste perception organs. Gustatory perception is made possible by the peripheral chemosensory organs, i.e., the taste buds, which are distributed in the epithelium of the taste papillae of the palate, tongue, epiglottis, throat and larynx. Each taste bud consists of a community of ~100 cells that process and integrate taste information with metabolic needs. Mammalian taste buds are contained in circumvallate, fungiform and foliate papillae and react to sweet, salty, sour, bitter and umami stimuli. The sensitivity of the taste buds for individual taste stimuli varies extensively and depends on the type of papillae and the part of the oral cavity in which they are located. There are at least three different cell types found in mammalian taste buds: type I cells, receptor (type II) cells and presynaptic (type III) cells. This review focuses on the biophysiological mechanisms of action of the various taste stimuli in humans. Currently, the best-characterized proteins are the Brought to you by |
This study aims to show the distribution and the three-dimensional structure of the lingual papillae in the arctic fox. The macro- and microscopic structure of the tongue and its lingual papillae was studied in 11 adult arctic foxes. Two types of mechanical papillae were distinguished on the dorsal surface of the tongue--filiform papillae and conical papillae. The gustatory papillae in the arctic fox are represented by fungiform, vallate and foliate papillae. The keratinized filiform papillae on the anterior part of tongue are composed of one big posterior process accompanied by 10-12 secondary anterior processes. The number of anterior processes of filiform papillae undergo a complete reduction within the area between the posterior part of the body of the tongue and area of the vallate papillae. The conical papillae cover the whole dorsal surface of the root of the tongue, including the lateral parts surrounding the area of the vallate papillae and the posterior part of the root. The size of the conical papillae increases towards the root of the tongue but their density decreases. In the arctic fox, there are three pairs of vallate papillae distributed on the plan of a triangle. The diameter of vallate papillae in each successive pair is bigger. The wall surrounding the body of the vallate papilla and its gustatory trench is composed of six to eight conical papillae joined at various degree. The foliate papillae on both margins of the tongue consist of seven to nine laminae.
The paper presents a comparison of the microscopic structure and morphometric traits of gustatory and mechanical lingual papillae in newborn and adult frugivorous Egyptian fruit bats (Rousettus aegyptiacus). All of the four types of lingual papillae found in adult animals were observed on the tongue surface in the newborn Egyptian fruit bats. After the birth, the gustatory papillae (fungiform and vallate papillae) were especially well-developed, as their structural characteristics, such as morphology of the epithelium and presence of the taste buds, indicate that they have reached almost complete functional traits. Mechanical papillae, particularly filiform papillae, in newborns are still fetal in character. Keratinization processes in the epithelium of these papillae are not advanced and specific structures, such as elongated processes, are missing. The morphometric analysis of the size of papillae and thickness of the mucosal epithelium showed that a complete development of keratinized structures in Egyptian fruit bats occurs at later stages of postnatal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.