Cranioectodermal dysplasia (CED) is a disorder characterized by craniofacial, skeletal, and ectodermal abnormalities. Most cases reported to date are sporadic, but a few familial cases support an autosomal-recessive inheritance pattern. Aiming at the elucidation of the genetic basis of CED, we collected 13 patients with CED symptoms from 12 independent families. In one family with consanguineous parents two siblings were affected, permitting linkage analysis and homozygosity mapping. This revealed a single region of homozygosity with a significant LOD score (3.57) on chromosome 3q21-3q24. By sequencing candidate genes from this interval we found a homozygous missense mutation in the IFT122 (WDR10) gene that cosegregated with the disease. Examination of IFT122 in our patient cohort revealed one additional homozygous missense change in the patient from a second consanguineous family. In addition, we found compound heterozygosity for a donor splice-site change and a missense change in one sporadic patient. All mutations were absent in 340 control chromosomes. Because IFT122 plays an important role in the assembly and maintenance of eukaryotic cilia, we investigated patient fibroblasts and found significantly reduced frequency and length of primary cilia as compared to controls. Furthermore, we transiently knocked down ift122 in zebrafish embryos and observed the typical phenotype found in other models of ciliopathies. Because not all of our patients harbored mutations in IFT122, CED seems to be genetically heterogeneous. Still, by identifying CED as a ciliary disorder, our study suggests that the causative mutations in the unresolved cases most likely affect primary cilia function too.
Deletions of chromosome bands 13q33-34 are rare. Patients with such deletions have mental retardation, microcephaly, and distinct facial features. Male patients frequently also have genital malformations. We report on four patients with three overlapping deletions of 13q33-34 that have been characterized by tiling-path array-CGH. Patient 1 had mental retardation and microcephaly with an interstitial 4.7 Mb deletion and a translocation t(12;13)(q13.3;q32.3). His mother (Patient 2), who also had mental retardation and microcephaly, carried the identical chromosome aberration. Patient 3 was a girl with a de novo insertion ins(7;13)(p15.1;q22q31) and interstitial 4.5 Mb deletion in 13q33-34. She had mental retardation and microcephaly. Patient 4 was a newborn boy with severe genital malformation (penoscrotal transposition and hypospadias) and microcephaly. He had a de novo ring chromosome 13 lacking the terminal 9.3 Mb of 13q. Karyotype-phenotype comparisons of these and eight previously published del13q33-34 patients suggest EFNB2 as a candidate gene for genital malformations in males. Molecular cytogenetic definition of a common deleted region in all patients suggests ARHGEF7 as a candidate gene for mental retardation and microcephaly.
Sensenbrenner syndrome (cranioectodermal dysplasia, CED) is a very rare autosomal recessive ciliopathy. Cranioectodermal dysplasia is characterized by craniofacial, skeletal, and ectodermal abnormalities. About 50 patients have been described to date. Sensenbrenner syndrome belongs to a group of ciliary chondrodysplasias and is a genetically heterogeneous disorder. Mutations in five genes: IFT122, WDR35, IFT43, WDR19, and IFT52 have been associated with CED. All known genes encode proteins that are part of the intraflagellar transport complex, which plays an important role in the assembly and maintenance of cilia. Here, we report a family with two children affected by Sensenbrenner syndrome, a 9‐year‐old girl and her older sister who died in infancy due to respiratory, liver, and renal insufficiency. Dysmorphic features included short stature with rhizomelic shortening of limbs, short fingers, preaxial polydactyly of left hand, narrow chest, craniosynostosis, dolichocephaly, high anterior hairline, epicanthal folds and telecanthus, depressed nasal bridge, low‐set ears, and additional ectodermal abnormalities. The patient presented with chronic tubulointerstitial renal disease. She had abnormal echogenicity on renal ultrasound, reduced glomerular filtration, albuminuria and tubular proteinuria, hypocalciuria and hypocitraturia, accompanied by pre‐hypertensive state. This pattern of renal abnormality was regarded as nephronophthisis. Psychomotor development was apparently normal. Molecular analysis in one of the affected individuals identified compound heterozygosity for a nonsense (c.1922T>G, p.(Leu641*)) and missense (c.2522A>T, p.(Asp841Val)) variants in WDR35. We present a detailed clinical descriptions of two female siblings showing an intrafamilial phenotypic variability of the disease, and illustrating the potential lethality of CED.
The observations of the CED patient in this study provide additional clinical data and expand the molecular spectrum of Sensenbrenner syndrome. Moreover, the two variants identified in the proband provide further evidence for the WDR35 mutations as the most common cause of this rare syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.