Engineering T cells with chimeric antigen receptors (CARs) is an effective method for directing T cells to attack tumors, but may cause adverse side effects such as the potentially lethal cytokine release syndrome. Here the authors show that the T cell antigen coupler (TAC), a chimeric receptor that co-opts the endogenous TCR, induces more efficient anti-tumor responses and reduced toxicity when compared with past-generation CARs. TAC-engineered T cells induce robust and antigen-specific cytokine production and cytotoxicity in vitro, and strong anti-tumor activity in a variety of xenograft models including solid and liquid tumors. In a solid tumor model, TAC-T cells outperform CD28-based CAR-T cells with increased anti-tumor efficacy, reduced toxicity, and faster tumor infiltration. Intratumoral TAC-T cells are enriched for Ki-67+ CD8+ T cells, demonstrating local expansion. These results indicate that TAC-T cells may have a superior therapeutic index relative to CAR-T cells.
Natural killer (NK) cells are useful for cancer immunotherapy and have proven clinically effective against hematologic malignancies. However, immunotherapies for poor prognosis solid malignancies, including ovarian cancer, have not been as successful due to immunosuppression by solid tumors. Although rearming patients' own NK cells to treat cancer is an attractive option, success of that strategy is limited by the impaired function of NK cells from cancer patients and by inhibition by self-MHC. In this study, we show that expansion converts healthy donor and immunosuppressed ovarian cancer patient NK cells to a cytotoxic CD56CD16 subset with activation state and antitumor functions that increase with CD56 brightness. We investigated whether these expanded NK cells may overcome the limitations of autologous NK cell therapy against solid tumors. Peripheral blood- and ascites-derived NK cells from ovarian cancer patients were expanded and then adoptively transferred into cell-line and autologous patient-derived xenograft models of human ovarian cancer. Expanded ovarian cancer patient NK cells reduced the burden of established tumors and prolonged survival. These results suggest that CD56 NK cells harbor superior antitumor function compared with CD56 cells. Thus, NK cell expansion may overcome limitations on autologous NK cell therapy by converting the patient's NK cells to a cytotoxic subset that exerts a therapeutic effect against autologous tumor. These findings suggest that the value of expanded autologous NK cell therapy for ovarian cancer and other solid malignancies should be clinically assessed. .
BackgroundAdoptive cell transfer of tumor-specific T lymphocytes (T cells) is proving to be an effective strategy for treating established tumors in cancer patients. One method of generating these cells is accomplished through engineering bulk T cell populations to express chimeric antigen receptors (CARs), which are specific for tumor antigens. Traditionally, these CARs are targeted against tumor antigens using single-chain antibodies (scFv). Here we describe the use of a designed ankyrin repeat protein (DARPin) as the tumor-antigen targeting domain.MethodsWe prepared second generation anti-HER2 CARs that were targeted to the tumor antigen by either a DARPin or scFv. The CARs were engineered into human and murine T cells. We then compared the ability of CARs to trigger cytokine production, degranulation and cytotoxicity.ResultsThe DARPin CARs displayed reduced surface expression relative to scFv CARs in murine cells but both CARs were expressed equally well on human T cells, suggesting that there may be a processing issue with the murine variants. In both the murine and human systems, the DARPin CARs were found to be highly functional, triggering cytokine and cytotoxic responses that were similar to those triggered by the scFv CARs.ConclusionsThese findings demonstrate the utility of DARPins as CAR-targeting agents and open up an avenue for the generation of CARs with novel antigen binding attributes.
Ligands for the NKG2D receptor are overexpressed on tumors, making them interesting immunotherapy targets. To assess the tumoricidal properties of T cells directed to attack NKG2D ligands, we engineered murine T cells with two distinct NKG2D-based chimeric antigen receptors (CARs): (i) a fusion between the NKG2D receptor and the CD3ζ chain and (ii) a conventional second-generation CAR, where the extracellular domain of NKG2D was fused to CD28 and CD3ζ. To enhance the CAR surface expression, we also engineered T cells to coexpress DAP10. In vitro functionality and surface expression levels of all three CARs was greater in BALB/c T cells than C57BL/6 T cells, indicating strain-specific differences. Upon adoptive transfer of NKG2D-CAR-T cells into syngeneic animals, we observed significant clinical toxicity resulting in morbidity and mortality. The severity of these toxicities varied between the CAR configurations and paralleled their in vitro NKG2D surface expression. BALB/c mice were more sensitive to these toxicities than C57BL/6 mice, consistent with the higher in vitro functionality of BALB/c T cells. Treatment with cyclophosphamide prior to adoptive transfer exacerbated the toxicity. We conclude that while NKG2D ligands may be useful targets for immunotherapy, the pursuit of NKG2D-based CAR-T cell therapies should be undertaken with caution.
The use of engineered T cells in adoptive transfer therapies has shown significant promise in treating hematological cancers. However, successes treating solid tumors are much less prevalent. Oncolytic viruses (OVs) have the capacity to induce specific lysis of tumor cells and indirectly impact tumor growth via vascular shutdown. These viruses bear natural abilities to associate with lymphocytes upon systemic administration, but therapeutic doses must be very high in order to evade antibodies and other components of the immune system. As T cells readily circulate through the body, using these cells to deliver OVs directly to tumors may provide an ideal combination. Our studies demonstrate that loading chimeric antigen receptor–engineered T cells with low doses of virus does not impact receptor expression or function in either murine or human T cells. Engineered T cells can deposit virus onto a variety of tumor targets, which can enhance the tumoricidal activity of the combination treatment. This concept appears to be broadly applicable, as we observed similar results using murine or human T cells, loaded with either RNA or DNA viruses. Overall, loading of engineered T cells with OVs represents a novel combination therapy that may increase the efficacy of both treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.