Plant morphogenesis is profoundly influenced by light (a phenomenon known as photomorphogenesis). For example, light inhibits seedling hypocotyl growth via activation of phytochromes and additional photoreceptors. Subsequently, information is transmitted through photoreceptor-linked signal transduction pathways and used (via previously unknown mechanisms) to control hypocotyl growth. Here we show that light inhibition of Arabidopsis (Arabidopsis thaliana) hypocotyl growth is in part dependent on the DELLAs (a family of nuclear growth-restraining proteins that mediate the effect of the phytohormone gibberellin [GA] on growth). We show that light inhibition of growth is reduced in DELLA-deficient mutant hypocotyls. We also show that light activation of phytochromes promotes the accumulation of DELLAs. A green fluorescent protein (GFP)-tagged DELLA (GFP-RGA) accumulates in elongating cells of light-grown, but not dark-grown, transgenic wild-type hypocotyls. Furthermore, transfer of seedlings from light to dark (or vice versa) results in rapid changes in hypocotyl GFP-RGA accumulation, changes that are paralleled by rapid alterations in the abundance in hypocotyls of transcripts encoding enzymes of GA metabolism. These observations suggest that light-dependent changes in hypocotyl GFP-RGA accumulation are a consequence of light-dependent changes in bioactive GA level. Finally, we show that GFP accumulation and quantitative modulation of hypocotyl growth is proportionate with light energy dose (the product of exposure duration and fluence rate). Hence, DELLAs inhibit hypocotyl growth during the light phase of the day-night cycle via a mechanism that is quantitatively responsive to natural light variability. We conclude that DELLAs are a major component of the adaptively significant mechanism via which light regulates plant growth during photomorphogenesis.
Background: Plant transformation is an invaluable tool for basic plant research, as well as a useful technique for the direct improvement of commercial crops. Barley (Hordeum vulgare) is the fourth most abundant cereal crop in the world. It also provides a useful model for the study of wheat, which has a larger and more complex genome. Most existing barley transformation methodologies are either complex or have low (<10%) transformation efficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.