Chronic exposure to nicotine during the first postnatal week in rats, a developmental period that corresponds to the third trimester of human gestation, results in sexually dimorphic long-term functional defects in the adult hippocampus. One potential cause could be the sex-specific differences in the maturation of GABAA receptor-mediated responses from excitatory to inhibitory, which depends on the expression of the Na2+/K+/Cl−-co-transporter NKCC1 and the K+/Cl− co-transporter KCC2. In the rat hippocampus, this switch occurs during the first and second postnatal week in females and males, respectively, and is regulated by nicotinic receptor activation. Excitatory GABAergic signaling can increase BDNF expression, which might exacerbate sex differences by impacting synaptogenesis. We hypothesized that chronic neonatal nicotine (CNN) exposure differentially regulates the expression of these co-transporters and BDNF in males and females. We use quantitative isotopic in situ hybridization to examine the expression of mRNAs for NKCC1, KCC2, BDNF, and NMDA receptor subunits NR2A and NR2B in the postnatal day (P) 5 and 8 rat hippocampus in both sexes that were either control-treated or with 6 mg/kg/day nicotine in milk formula (CNN) via gastric intubation starting at P1. In line with prolonged GABAergic excitation, we found that at P5 males had significantly higher mRNA expression of NKCC1 and BDNF than females. CNN treatment resulted in a significant increase in KCC2 and BDNF mRNA expression in male but not female hippocampus (p<0.05). Males also had higher expression of NR2A and lower expression of NR2B at P5 compared to females (p<0.05). At P8, there were neither sex nor treatment effects on mRNA expression, indicating the end of a critical period for sensitivity to nicotine. These results suggest that differential maturation of GABAAR-mediated responses result in sex-specific sensitivity to nicotine during early postnatal development, potentially explaining the differential long-term effects of CNN on hippocampal function.
Smoking during pregnancy exposes the fetus to nicotine, resulting in nicotine-stimulated neurotransmitter release. Recent evidence suggests that the hippocampus develops differently in males and females with delayed maturation in males. We show that chronic nicotine exposure during the first postnatal week has sex-specific long-term effects. Neonatal rat pups were chronically treated with nicotine (6 mg/kg/day) (CNN) from postnatal day 1 to 7 or milk only (Controls), and hippocampal slices were prepared from Control- and CNN-treated young adults. Field excitatory postsynaptic potentials (fEPSPs) or population spikes (PSs) were recorded from the CA1 hippocampus following CA1 s. radiatum stimulation. Input/Output curves constructed from fEPSP data indicated that CNN-males, but not females, had significantly increased excitatory responses compared to Controls (p<0.05, n=10 Con, n=11 CNN). Long-term potentiation (LTP) was not significantly changed by CNN. In the presence of bicuculline, which blocks inhibitory GABAA receptors, an epileptiform burst consisting of a series of PSs was evoked. The amplitude of the first PS was significantly larger in CNN-males and females compared to Controls (males: p<0.01, n=8 Con, n=8 CNN; females: p<0.05, n=9 Con, n=7 CNN). Only CNN-males also had significantly larger second PSs (p<0.05, n=8 con, n=8 CNN). Epileptiform activity evoked by zero Mg2+ incubation did not differ in amplitude or duration of bursts in CNN-males or females compared to Controls. These data indicate that neonatal nicotine exposure has long lasting effects and results in increased excitation within the CA1 hippocampus in adulthood, with males showing increased sensitivity to nicotine's effects.
Nicotinic receptors have been linked to a wide range of cognitive and behavioral functions, but surprisingly little is known about their involvement in cost benefit decision making. The goal of these experiments was to determine how nicotinic acetylcholine receptor (nAChR) expression is related to two forms of cost benefit decision making. Male Long Evans rats were tested in probability and delay discounting tasks, which required discrete trial choices between a small reward and a large reward associated with varying probabilities of omission and varying delays to reward delivery, respectively. Following testing, radioligand binding to α4β2* and α7 nAChR subtypes in brain regions implicated in cost benefit decision making was examined. Significant linear relationships were observed between choice of the large delayed reward in the delay discounting task and α4β2* receptor binding in both dorsal and ventral hippocampus. Additionally, trends were found suggesting that choice of the large costly reward in both discounting tasks was inversely related to α4β2* receptor binding in the medial prefrontal cortex and nucleus accumbens shell. Similar, trends suggested that choice of the large delayed reward in the delay discounting task was inversely related to α4β2* receptor binding in the orbitofrontal cortex, nucleus accumbens core, and basolateral amygdala, as well as to α7 receptor binding in basolateral amygdala. These data suggest that nAChRs (particularly α4β2*) play both unique and common roles in decisions that require consideration of different types of reward costs.
Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking.
The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.