Objective. To use human cartilage samples and a mouse model of osteoarthritis (OA) to determine whether extracellular superoxide dismutase (EC-SOD) is a constituent of cartilage and to evaluate whether there is a relationship between EC-SOD deficiency and OA.Methods. Samples of human cartilage were obtained from femoral heads at the time of joint replacement surgery for OA or femoral neck fracture. Samples of mouse tibial cartilage obtained from STR/ort mice and CBA control mice were compared at 5, 15, and 35 weeks of age. EC-SOD was measured by enzyme-linked immunosorbent assay, Western blotting, and immunohistochemistry techniques. Real-time quantitative reverse transcription-polymerase chain reaction was used to measure messenger RNA for EC-SOD and for endothelial cell, neuronal, and inducible nitric oxide synthases. Nitrotyrosine formation was assayed by Western blotting in mouse cartilage and by fluorescence immunohistochemistry in human cartilage.Results. Human articular cartilage contained large amounts of EC-SOD (mean ؎ SEM 18.8 ؎ 3.8 ng/gm wet weight of cartilage). Cartilage from patients with OA had an ϳ4-fold lower level of EC-SOD compared with cartilage from patients with hip fracture. Young STR/ort mice had decreased levels of EC-SOD in tibial cartilage before histologic evidence of disease occurred, as well as significantly more nitrotyrosine formation at all ages studied.Conclusion. EC-SOD, the major scavenger of reactive oxygen species in extracellular spaces, is decreased in humans with OA and in an animal model of OA. Our findings suggest that inadequate control of reactive oxygen species plays a role in the pathophysiology of OA.
We have performed a prospective, single-surgeon study analysing the histological results of autologous chondrocyte implantation. Fourteen patients underwent autologous chondrocyte implantation of the knee and were evaluated at one year by clinical assessment and arthroscopy. Standard staining was used to examine the sections. In addition, in situ hybridisation was used to establish type-IIa and type-IIb collagen mRNA expression and immunolocalisation techniques demonstrated the positions of type-II and type-X collagen. Eight patients regenerated hyaline cartilage and also contained type-X collagen in the deepest layers and type-II collagen in the deep layers. Three demonstrated fibrocartilage and had type-I collagen in the deep layers. In situ hybridisation revealed that all 14 samples had the potential to express both type-IIa and type-IIb collagen. We have shown that one year after the initial implantation chondrocytes are capable of producing type-II collagen and that they continue to proliferate and mature.
Expression of all the detected MMPs and TIMP-2 is up-regulated in STR/ort mice at the mRNA level. However, failure to detect protein expression for MMPs 2, 7, 9, 13 and TIMPs 1 and 2 in murine chondrocytes by immunohistochemistry indicates that the changes in mRNA levels in STR/ort mice must be interpreted with caution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.