Environmentally friendly solutions are becoming more prominent than ever as a result of concern regarding the state of our deteriorating planet. This paper presents a new system configuration of the front-end rectifier stage for a hybrid wind/photovoltaic energy system. This configuration allows the two sources to supply the load separately or simultaneously depending on the availability of the energy sources. The inherent nature of this Cuk-SEPIC fused converter, additional input filters are not necessary to filter out high frequency harmonics. Harmonic content is detrimental for the generator lifespan, heating issues, and efficiency. The fused multiinput rectifier stage also allows Maximum Power Point Tracking (MPPT) to be used to extract maximum power from the wind and sun when it is available. An adaptive MPPT algorithm will be used for the wind system and a standard perturb and observe method will be used for the PV system. Operational analysis of the proposed system will be discussed in this paper. Simulation results are given to highlight the merits of the proposed circuit.
Due to the ever growing global energy demand and pollution levels, clean and renewable alternative energy resources, such as wind, have become indispensable for preserving the planet for future generations. With wind being an unpredictable resource, it is imperative that wind systems extract as much power from the wind as possible while it is available. The conventional maximum power point tracking (MPPT) algorithms that use pre-determined mathematical relationships to represent a specific wind system's power/torque characteristics suffer the drawback of deteriorated efficiency over time whereas the perturb &observe algorithms are susceptible to logical errors when subjected to frequent atmospheric variations. In order to solve the aforementioned drawbacks as well as to reduce the cost of the sensing network required to achieve MPPT, this paper proposes a novel sensorless slope-assisted MPPT algorithm that is able to avoid logical errors attributed to wind fluctuations by detecting and identifying atmospheric changes. Atmospheric changes are detected by a state observer by monitoring the generator output power, the AC/DC rectifier output voltage, and the rate of change of the power-voltage ratio without the need for anemometers and any generator speed sensors. The detailed description of the proposed MPPT control logic will be provided in this paper. The functionality of the proposed control method is verified through simulation results on a 3kW system, as well as experimental results on a proof-of-concept 200W prototype.Index Terms-maximum power point tracking, power electronics, sensor-less, wind energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.