Developing thymocytes migrate from the cortex to the medulla of the thymus as a consequence of positive selection. This migration is likely to be essential for tolerance because it allows the developing cells to move into an environment that is optimal for negative selection. Guidance mechanisms that draw positively selected thymocytes into the medulla have not been clarified, but several studies have implicated chemokines in the process. CCR7, the receptor for the medullary chemokines CCL19 and CCL21, is induced on thymocytes during their positive selection. In this study we show that premature expression of CCR7 repositions CD4+CD8+ double-positive cells into the medulla of transgenic mice. This repositioning of the thymocytes is accompanied by impairment of their development. The data show the involvement of CCR7 in medullary migration and emphasize the importance of proper thymocyte positioning for efficient T cell development.
CD5 deficiency results in a hyper-responsive phenotype to Ag receptor stimulation. Here we show that the development and responses of CD4 lineage T cells are regulated by the function of CD5. Thymocytes expressing the I-Ad-restricted DO11.10 TCR undergo abnormal selection without CD5. In H-2d mice, the absence of CD5 causes deletion of double-positive thymocytes, but allows for efficient selection of cells expressing high levels of the DO11.10 clonotype. By contrast, there is enhanced negative selection against the DO11.10 clonotype in the presence of I-Ab. T cell hybridomas and DO11.10 T cells are more responsive to TCR stimulation in the absence of CD5. Such hypersensitivity can be eliminated by expression of wild-type CD5, but not by a form of CD5 that lacks the cytoplasmic tail. Finally, CD5 deficiency partially suppresses the block of CD4 lineage development in CD4-deficient mice. Taken together, the data support a general role for CD5 as a negative regulator of Ag receptor signaling in the development and immune responses of CD4 lineage T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.