The absorption spectrum of polythiophene and its derivative poly͑3-hexylthiophene͒ ͑P3HT͒ is usually described in terms of an intrachain exciton coupled to a single phonon mode. We show that this model is too simplistic for highly ordered, regioregular P3HT and that, analogous to the case of charged polarons in this material, interchain interactions must be taken into account to correctly describe the absorption spectrum. We show that the lowest energy feature in the-* region of the absorption spectrum is associated with an interchain absorption, the intensity of which is correlated with the degree of order in the polymer. Correspondingly, we show that the emission from P3HT also exhibits contributions from both interchain and intrachain states, in a manner similar to that recently shown for poly͑phenylenevinylene͒. Having reinterpreted the physical origin of the features in the absorption and emission spectra of P3HT, we then model these spectra and show how they evolve as the degree of order in the polymer is changed by varying several physical parameters including temperature and regioregularity of the polymer.
The energy gap law established for aromatic hydrocarbons and rare earth ions relates the nonradiative decay rate to the energy gap of a transition through a multiphonon emission process. We show that this energy gap law can be applied to the phosphoresce of a series of conjugated polymers and monomers for which the radiative decay rate has been enhanced through incorporation of a heavy metal. We find that the nonradiative decay rate from the triplet state T(1) increases exponentially with decreasing T(1)-S(0) gap for the polymers and monomers at 300 and 20 K. Comparison of the nonradiative decay of polymers with that of their corresponding monomers highlights the role of electron-lattice coupling.
The efficiency of light-emitting diodes (LEDs) made from organic semiconductors is determined by the fraction of injected electrons and holes that recombine to form emissive spin-singlet states rather than non-emissive spin-triplet states. If the process by which these states form is spin-independent, the maximum efficiency of organic LEDs will be limited to 25 per cent. But recent reports have indicated fractions of emissive singlet states ranging from 22 to 63 per cent, and the reason for this variation remains unclear. Here we determine the absolute fraction of singlet states generated in a platinum-containing conjugated polymer and its corresponding monomer. The spin-orbit coupling introduced by the platinum atom allows triplet-state emission, so optically and electrically generated luminescence from both singlet and triplet states can be compared directly. We find an average singlet generation fraction of 22 +/- 1 per cent for the monomer, but 57 +/- 4 per cent for the polymer. This suggests that recombination is spin-independent for the monomer, but that a spin-dependent process, favouring singlet formation, is effective in the polymer. We suggest that this process is a consequence of the exchange interaction, which will operate on overlapping electron and hole wavefunctions on the same polymer chain at their capture radius.
Control of intermolecular interactions is crucial to the exploitation of molecular semiconductors for both organic electronics and the viable manipulation and incorporation of single molecules into nano-engineered devices. Here we explore the properties of a class of materials that are engineered at a supramolecular level by threading a conjugated macromolecule, such as poly(para-phenylene), poly(4,4'-diphenylene vinylene) or polyfluorene through alpha- or beta-cyclodextrin rings, so as to reduce intermolecular interactions and solid-state packing effects that red-shift and partially quench the luminescence. Our approach preserves the fundamental semiconducting properties of the conjugated wires, and is effective at both increasing the photoluminescence efficiency and blue-shifting the emission of the conjugated cores, in the solid state, while still allowing charge-transport. We used the polymers to prepare single-layer light-emitting diodes with Ca and Al cathodes, and observed blue and green emission. The reduced tendency for polymer chains to aggregate allows solution-processing of individual polyrotaxane wires onto substrates, as revealed by scanning force microscopy.
Progress reports are a new type of article in Advanced Materials, dealing with the hottest current topics, and providing readers with a critically selected overview of important progress in these fields. It is not intended that the articles be comprehensive, but rather insightful, selective, critical, opinionated, and even visionary. We have approached scientists we believe are at the very forefront of these fields to contribute the articles, which will appear on an annual basis. The article below describes the latest advances in fluorescence and phosphorescence in organic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.