Old World leaf-nosed bats (family Hipposideridae) can deform the shapes of their 'noseleaves' (i.e. ultrasonic emission baffles) and outer ears during echolocation behaviors. Prior work has shown that deformations on the emission as well as on the reception side can have an impact on the properties of the emitted/received sonar signals. The occurrence of the deformations on the emission and reception sides raises the question of whether the bats coordinate these two dynamic biosonar features to achieve synergistic effects. To address this question, simultaneous three-dimensional reconstructions of the trajectories of landmarks on the dynamic noseleaf and pinna geometries have been obtained in great roundleaf bats (Hipposideros pratti). These joint kinematics data on the noseleaf and pinnae have shown both qualitative and quantitative relationships between the noseleaf and pinna motions: large noseleaf deformations (opening or closing) tended to be associated with nonrigid pinna motions. Furthermore, closing deformations of the noseleaves tended to co-occur with closing motions of the pinna. Finally, a canonical correlation analysis of the motion trajectories has revealed a tight correlation between the motions of the landmarks on the noseleaf and both pinnae. These results demonstrate that the biosonar system of hipposiderid bats includes coordinated emission and reception dynamics.
Digital technologies have fundamentally altered emergency and crisis management work. This essay sketches the macro-environmental transformations wrought by digital technologies in emergency and crisis management and outlines their implications for managerial reasoning and decision-making. It proposes multi-level approaches to improve congruence between crisis managers and their environments to reduce cognitive and organizational barriers and improve decision-making. The future of crisis management lies in reducing the misalignment between personal, proximal, and distal environmental conditions.
Supersonic jet exhaust plumes produce noise in jet engines, which has been a problem in the aerospace field. Researchers are working on ways to reduce this turbulent mixing noise, with little modification to the engine and nozzle. Prior work has shown that total temperature non-uniformity is a noise reduction technique which introduces a stream of cold flow into the heated jet. This method has been shown to cause changes in the exhaust plume and result in a 2±0.5 dB reduction of peak sound pressure levels. The goal of this work is to reveal underlying changes in the spatial-temporal structure of plume instability and turbulence caused by non-uniform total temperature distributions. Studies have demonstrated several methods of jet noise reduction by modifying the turbulent mixing in the exhaust plume. Large-scale turbulent structures have been shown to be the dominant source of noise in heated supersonic jets, especially over long, streamwise distances. Therefore, a large field-of-view measurement is desirable for studying these structures. Time-Resolved Doppler Global Velocimetry (TR-DGV) with a sampling frequency of 50 kHz is used to collect flow velocity data that is resolved in both time and space.The experiments for data collection were performed on a heated supersonic jet at the Virginia Tech Advanced Propulsion and Power Laboratory. A converging-diverging nozzle with a diameter Reynolds number of 850,000 was used to generate a perfectly expanded, heated flow of Mach 1.5 and a nozzle pressure ratio (NPR) of 3.67. The unheated plume was introduced at the center of the nozzle, with a total temperature ratio (TTR) of 2. Comparison of the mean velocity fields shows that the introduction of the cooler temperature flow in the thermally non-uniform case results in a velocity deficit of about 10% compared to the thermally uniform case. The method of spectral proper orthogonal decomposition (SPOD) was used to reveal the large-scale, coherent noise producing mechanisms. SPOD results indicate that the thermally non-uniform case showed a decrease in turbulent kinetic energy compared to the uniform case at all frequencies. Coherent fluctuations start developing further upstream in the thermally non-uniform case. The addition of the unheated plume results in a disruption in the propagation of the Mach waves from the shear layer into the ambient. The results indicate that the total temperature nonuniformity results in a modified exhaust plume and mean flow distribution at the nozzle exit, compared to that of a thermally uniform flow, which past studies have indicated is a method to reduce jet noise.I would like to thank my advisor, Dr. Todd Lowe, for his support, encouragement, and patience throughout these past two years. There were times when I felt discouraged when struggling to balance my research, graduate school courses, and a full-time job, but you had faith in me and pushed me to achieve my goals. To my co-chair, Dr. Wing Ng, thank you for your constant feedback throughout the duration of my master's degree. Comple...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.