Targeted inhibitors of neurotropic tyrosine kinases are highly effective in selected patients with gene fusions involving NTRK1, NTRK2, or NTRK3. These fusions are consistently detected in rare cancer types (e.g., secretory breast carcinoma and congenital infantile fibrosarcoma), but the occurrence of NTRK fusions in common cancers and their relationship to other therapy biomarkers are largely unexplored. Tissue samples from 11,502 patients were analyzed for 53 gene fusions and sequencing of 592 genes, along with an immunohistochemical evaluation of TrkA/B/C and PD-L1. Thirty-one cases (0.27% of the entire cohort) had NTRK fusions. The most common fusions were ETV6:NTRK3 (n = 10) and TPM3:NTRK1 (n = 6). Gliomas had the highest number of NTRK fusions (14/982, 1.4%), most commonly involving NTRK2 (n = 9). Seventeen non-glioma cases with NTRK fusions included carcinomas of the lungs, thyroid, breast, cervix, colon, nasal cavity, cancer of unknown primary and soft tissue sarcomas. Strong and uniform Trk expression detected with a pan-Trk immunohistochemistry characterized 7/8 NTRK1 fusion cases and 8/9 NTRK2 fusion cases, while NTRK3 fused cases were positive in 6/11 (55%) of cases. 29% of NTRK fusion cases had no other pathogenic genomic alteration. PD-L1 expression was observed in 23% of NTRK fused cases while high tumor DNA microsatellite instability was detected in two cases. We confirm the rarity of NTRK genes fusions outside the brain malignancies. NTRK inhibitors alone or combined with immune checkpoint inhibitors may be a therapeutic option for a substantial proportion of these patients. Strategies for detection of the NTRK fusion-driven cancers may include immunohistochemistry, but gene fusion detection remains the most reliable tool.
To clarify the relationships among TML, MMR, and immune checkpoint expression, we profiled the frequency of shared biomarker phenotypes. On the basis of a variety of potential biomarkers of response to immune checkpoints, only small subsets of glioma patients are likely to benefit from monotherapy immune checkpoint inhibition.
Purpose The prevalence of homologous recombination DNA damage repair (HR-DDR) deficiencies among all tumor lineages is not well characterized. Therapy directed toward homologous recombination DDR deficiency (HRD) is now approved in ovarian and breast cancer, and there may be additional opportunities for benefit for patients with other cancers. Comprehensive evaluations for HRD are limited in part by the lack of a uniform, cost-effective method for testing and defining HRD. Methods Molecular profiles of 52,426 tumors were reviewed to identify pathogenic mutations in the HR-DDR genes ARID1A, ATM, ATRX, BAP1, BARD1, BLM, BRCA1/2, BRIP1, CHEK1/2, FANCA/C/D2/E/F/G/L, MRE11A, NBN, PALB2, RAD50, RAD51, RAD51B, or WRN. From solid tumors submitted to Caris Life Sciences, molecular profiles were generated using next-generation sequencing (NGS; average read depth, 500×). A total of 17,566 tumors were sequenced with NGS600 (n = 592 genes), and 34,860 tumors underwent hotspot Illumina MiSeq platform testing (n = 47 genes). Results Of the tumors that underwent NGS600 testing, the overall frequency of HRDDR mutations detected was 17.4%, and the most commonly mutated lineages were endometrial (34.4%; n = 1,475), biliary tract (28.9%; n = 343), bladder (23.9%; n = 201), hepatocellular (20.9%; n = 115), gastroesophageal (20.8%; n = 619), and ovarian (20.0%; n = 2,489). Least commonly mutated lineages included GI stromal (3.7%; n = 108), head and neck (6.8%; n = 206), and sarcoma (9.3%; n = 592). ARID1A was the most commonly mutated gene (7.2%), followed by BRCA2 (3.0%), BRCA1 (2.8%), ATM (1.3%), ATRX (1.3%), and CHEK2 (1.3%). Conclusions HR-DDR mutations were seen in 17.4% of tumors across 21 cancer lineages, providing a path to explore the role of HRD-directed therapies, including poly-ADP ribose polymerase inhibitors, DNA-damaging chemotherapies, and newer agents such as ATR inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.