Stromatolites are organosedimentary build-ups that have formed as a result of the sediment trapping, binding and precipitating activities of microbes. Today, extant systems provide an ideal platform for understanding the structure, composition, and interactions between stromatolite-forming microbial communities and their respective environments. In this study, we compared the metagenomes of three prevalent stromatolite-forming microbial mat types in the Spaven Province of Hamelin Pool, Shark Bay located in Western Australia. These stromatolite-forming mat types included an intertidal pustular mat as well as a smooth and colloform mat types located in the subtidal zone. Additionally, the metagenomes of an adjacent, non-lithifying mat located in the upper intertidal zone were also sequenced for comparative purposes. Taxonomic and functional gene analyses revealed distinctive differences between the lithifying and non-lithifying mat types, which strongly correlated with water depth. Three distinct populations emerged including the upper intertidal non-lithifying mats, the intertidal pustular mats associated with unlaminated carbonate build-ups, and the subtidal colloform and smooth mat types associated with laminated structures. Functional analysis of metagenomes revealed that amongst stromatolite-forming mats there was an enrichment of photosynthesis pathways in the pustular stromatolite-forming mats. In the colloform and smooth stromatolite-forming mats, however, there was an increase in the abundance of genes associated with those heterotrophic metabolisms typically associated with carbonate mineralization, such as sulfate reduction. The comparative metagenomic analyses suggest that stromatolites of Hamelin Pool may form by two distinctive processes that are highly dependent on water depth. These results provide key insight into the potential adaptive strategies and synergistic interactions between microbes and their environments that may lead to stromatolite formation and accretion.
technologies to treat wastewater in decentralized systems are critical for sustainable development. Bioreactors are suitable for low-energy removal of inorganic and organic compounds, particularly for non-potable applications where a small footprint is required. one of the main problems associated with bioreactor use is sporadic spikes of chemical toxins, including nanoparticles. Here, we describe the development of DiYBot (Digital proxy of a Bio-Reactor), which enables remote monitoring of bioreactors and uses the data to inform decisions related to systems management. to test DiYBot, a household-scale membrane aerated bioreactor with real-time water quality sensors was used to treat household greywater simulant. After reaching steady-state, silver nanoparticles (Agnp) representative of the mixture found in laundry wastewater were injected into the system to represent a chemical contamination. Measurements of carbon metabolism, effluent water quality, biofilm sloughing rate, and microbial diversity were characterized after nanoparticle exposure. Real-time sensor data were analyzed to reconstruct phase-space dynamics and extrapolate a phenomenological digital proxy to evaluate system performance. the management implication of the stable-focus dynamics, reconstructed from observed data, is that the bioreactor self-corrects in response to contamination spikes at AgNP levels below 2.0 mg/L. DIYBOT may help reduce the frequency of human-in-the-loop corrective management actions for wastewater processing. Surfactants are used globally for a wide variety of purposes, including: food preparation 1 , drug delivery 2 , detergents 3 , foaming agents 4 , dispersants 5 , and as a seed carbon source for biodegradation of heavy metals in contaminated soil 6,7. One of the most common surfactants is the anionic compound sodium lauryl ether sulfate (SLES). The fate of SLES in the environment has been characterized for a number of scenarios, including both industrial applications 8 and household wastewater 3. In household wastewater, SLES is found in greywater (GW) from bathrooms, including bathtubs or showers, but excluding urinals or toilets. GW constitutes up to 70% of the total indoor wastewater and 23% of the total suspended solids per household (by volume) 3. Decentralized treatment
Biotic factors that influence the temporal stability of microbial community functioning are an emerging research focus for control of natural and engineered systems. Discovery of common features within community ensembles that differ in functional stability over time is a starting point to explore biotic factors. We serially propagated a suite of soil microbial communities through five generations of 28 d microcosm incubations to examine microbial community compositional and functional stability during plant-litter decomposition. Using DOC abundance as a target function, we hypothesized that microbial diversity, compositional stability, and associated changes in interactions would explain the relative stability of the ecosystem function between generations. Communities with initially high DOC abundance tended to converge towards a “low DOC” phenotype within two generations, but across all microcosms, functional stability between generations was highly variable. By splitting communities into two cohorts based on their relative DOC functional stability, we found that compositional shifts, diversity, and interaction network complexity were associated with the stability of DOC abundance between generations. Further, our results showed that legacy effects were important in determining compositional and functional outcomes, and we identified taxa associated with high DOC abundance. In the context of litter decomposition, achieving functionally stable communities is required to utilize soil microbiomes to increase DOC abundance and long-term terrestrial DOC sequestration as 1 solution to reduce atmospheric carbon dioxide concentrations. Identifying factors that stabilize function for a community of interest may improve the success of microbiome engineering applications. Importance Microbial community functioning can be highly dynamic over time. Identifying and understanding biotic factors that control functional stability is of significant interest for natural and engineered communities alike. Using plant litter decomposing communities as a model system, this study examined the stability of ecosystem function over time following repeated community transfers. By identifying microbial community features that are associated with stable ecosystem functions, microbial communities can be manipulated in ways that promote the consistency and reliability of the desired function, improving outcomes and increasing the utility of microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.