Random Forest (RF) QSPR models were developed with a data set of homolytic bond dissociation energies (BDE) previously calculated by B3LYP/6‐311++G(d,p)//DFTB for 2263 sp3C−H covalent bonds. The best set of attributes consisted in 114 descriptors of the carbon atom (counts of atom types in 5 spheres around the kernel atom and ring descriptors). The optimized model predicted the DFT‐calculated BDE of an independent test set of 224 bonds with MAE=2.86 kcal/mol. A new data set of 409 bonds from the iBonD database (http://ibond.nankai.edu.cn) was predicted by the RF with a modest MAE (5.36 kcal/mol) but a relatively high R2 (0.75) against experimental energies. A prediction scheme was explored that corrects the RF prediction with the average deviation observed for the k nearest neighbours (KNN) in an additional memory of experimental data. The corrected predictions achieved MAE=2.22 kcal/mol for an independent test set of 145 bonds and the corresponding experimental bond energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.