The laser annealing of a Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZT) thin film on a metglas substrate was simulated in order to understand how the annealing parameters (energy and fluence of the laser, pulse duration, etc) influence the optimization of the crystallinity of the film. Using a 1D heat diffusion equation combined with a finite difference method, the variation of the temperature with the depth relative to the film’s surface and on annealing time was studied. The laser intensity, BCZT’s reflectivity and the temperature dependence of the ther¬mal conductivity and specific heat of the BCZT were considered. No structural phase changes were detected in both the BCZT and the metglas for the values of laser fluence studied, but for 80 mJ/cm2 the maximum temperature approached near the BCZT’s melting temperature. It was observed that since the film’s ther¬mal conductivity decreases with increasing fluence, lower fluences allow for a better distribution of the laser’s energy throughout the crystal lattice, increasing the crystallinity. It was further observed that between consecutive pulses the film’s temperature stabilizes at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.