BackgroundThe proteins responsible for the key molecular events leading to the structural changes between the developmental stages of Echinococcus granulosus remain unknown. In this work, azidohomoalanine (AHA)-specific labeling was used to identify proteins expressed by E. granulosus protoscoleces (PSCs) upon the induction of strobilar development.Methodology/Principal FindingsThe in vitro incorporation of AHA with different tags into newly synthesized proteins (NSPs) by PSCs was analyzed using SDS-PAGE and confocal microscopy. The LC-MS/MS analysis of AHA-labeled NSPs by PSCs undergoing strobilation allowed for the identification of 365 proteins, of which 75 were differentially expressed in comparison between the presence or absence of strobilation stimuli and 51 were expressed exclusively in either condition. These proteins were mainly involved in metabolic, regulatory and signaling processes.Conclusions/SignificanceAfter the controlled-labeling of proteins during the induction of strobilar development, we identified modifications in protein expression. The changes in the metabolism and the activation of control and signaling pathways may be important for the correct parasite development and be target for further studies.
Echinococcus granulosus has a complex life cycle involving two mammalian hosts. The transition from one host to another is accompanied by changes in gene expression, and the transcriptional events that underlie this transition have not yet been fully characterized. In this study, RNA-seq was used to compare the transcription profiles of samples from E. granulosus protoscoleces induced in vitro to strobilar development at three time points. We identified 818 differentially expressed genes, which were divided into eight expression clusters formed over the entire 24 h period. An enrichment of gene transcripts with molecular functions of signal transduction, enzymes, and protein modifications was observed upon induction and developmental progression. This transcriptomic study provides insights for understanding the complex life cycle of E. granulosus and contributes for searching for the key genes correlating with the strobilar development, which can be used to identify potential candidates for the development of anthelmintic drugs.
Background: Echinococcus granulosus has a complex life cycle involving two mammalian hosts. The transition from one host to another is accompanied by changes in gene expression, and the transcriptional events that underlie these processes have not yet been fully characterized.Results: In this study, RNA-seq is used to compare the transcription profiles of four time samples of E. granulosus protoscoleces in vitro induced to strobilar development. We identified 818 differentially expressed genes, which were divided into eight expression clusters formed over the entire 24 hours time course and indicated different transcriptional patterns. An enrichment of gene transcripts with molecular functions of signal transduction, enzymes and protein modifications was observed with progression of development.
Conclusion:This transcriptomic study provides insight for understanding the complex life cycle of E. granulosus and contributes for searching for the key genes correlating with the strobilar development, providing interesting hints for further studies. 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.