The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measure a topological entanglement entropy near the expected value of ln 2, and simulate anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigate key aspects of the surface code, including logical state injection and the decay of the non-local order parameter. Our results demonstrate the potential for quantum processors to provide key insights into topological quantum matter and quantum error correction.
Quantum scrambling Information spreading in interacting quantum systems is of relevance to a wide range of settings, from black holes to strange metals. Mi et al . used the Sycamore quantum processor to study this process. Through judicial design of quantum circuits, the researchers were able to separate the contributions of operator spreading and operator entanglement. Measuring the mean value and fluctuations of a specific correlator enabled quantifying these distinct contributions. —JS
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Geometrical cues play an essential role in neuronal growth. Here, we quantify axonal growth on surfaces with controlled geometries and report a general stochastic approach that quantitatively describes the motion of growth cones. We show that axons display a strong directional alignment on micro-patterned surfaces when the periodicity of the patterns matches the dimension of the growth cone. The growth cone dynamics on surfaces with uniform geometry is described by a linear Langevin equation with both deterministic and stochastic contributions. In contrast, axonal growth on surfaces with periodic patterns is characterized by a system of two generalized Langevin equations with both linear and quadratic velocity dependence and stochastic noise. We combine experimental data with theoretical analysis to measure the key parameters of the growth cone motion: angular distributions, correlation functions, diffusion coefficients, characteristics speeds and damping coefficients. We demonstrate that axonal dynamics displays a cross-over from an Ornstein-Uhlenbeck process to a non-linear stochastic regime when the geometrical periodicity of the pattern approaches the linear dimension of the growth cone. Growth alignment is determined by surface geometry, which is fully quantified by the deterministic part of the Langevin equation. These results provide new insight into the role of curvature sensing proteins and their interactions with geometrical cues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.