BackgroundThe correct evaluation of mineralization is fundamental for the study of skeletal development, maintenance, and regeneration. Current methods to visualize mineralized tissue in zebrafish rely on: 1) fixed specimens; 2) radiographic and μCT techniques, that are ultimately limited in resolution; or 3) vital stains with fluorochromes that are indistinguishable from the signal of green fluorescent protein (GFP)-labelled cells. Alizarin compounds, either in the form of alizarin red S (ARS) or alizarin complexone (ALC), have long been used to stain the mineralized skeleton in fixed specimens from all vertebrate groups. Recent works have used ARS vital staining in zebrafish and medaka, yet not based on consistent protocols. There is a fundamental concern on whether ARS vital staining, achieved by adding ARS to the water, can affect bone formation in juvenile and adult zebrafish, as ARS has been shown to inhibit skeletal growth and mineralization in mammals.ResultsHere we present a protocol for vital staining of mineralized structures in zebrafish with a low ARS concentration that does not affect bone mineralization, even after repetitive ARS staining events, as confirmed by careful imaging under fluorescent light. Early and late stages of bone development are equally unaffected by this vital staining protocol. From all tested concentrations, 0.01 % ARS yielded correct detection of bone calcium deposits without inducing additional stress to fish.ConclusionsThe proposed ARS vital staining protocol can be combined with GFP fluorescence associated with skeletal tissues and thus represents a powerful tool for in vivo monitoring of mineralized structures. We provide examples from wild type and transgenic GFP-expressing zebrafish, for endoskeletal development and dermal fin ray regeneration.
BackgroundIn chondrichthyans, basal osteichthyans and tetrapods, vertebral bodies have cartilaginous anlagen that subsequently mineralize (chondrichthyans) or ossify (osteichthyans). Chondrocytes that form the vertebral centra derive from somites. In teleost fish, vertebral centrum formation starts in the absence of cartilage, through direct mineralization of the notochord sheath. In a second step, the notochord is surrounded by somite-derived intramembranous bone. In several small teleost species, including zebrafish (Danio rerio), even haemal and neural arches form directly as intramembranous bone and only modified caudalmost arches remain cartilaginous. This study compares initial patterns of mineralization in different regions of the vertebral column in zebrafish. We ask if the absence or presence of cartilaginous arches influences the pattern of notochord sheath mineralization.ResultsTo reveal which cells are involved in mineralization of the notochord sheath we identify proliferating cells, we trace mineralization on the histological level and we analyze cell ultrastructure by TEM. Moreover, we localize proteins and genes that are typically expressed by skeletogenic cells such as Collagen type II, Alkaline phosphatase (ALP) and Osteocalcin (Oc). Mineralization of abdominal and caudal vertebrae starts with a complete ring within the notochord sheath and prior to the formation of the bony arches. In contrast, notochord mineralization of caudal fin centra starts with a broad ventral mineral deposition, associated with the bases of the modified cartilaginous arches. Similar, arch-related, patterns of mineralization occur in teleosts that maintain cartilaginous arches throughout the spine.Throughout the entire vertebral column, we were able to co-localize ALP-positive signal with chordacentrum mineralization sites, as well as Collagen II and Oc protein accumulation in the mineralizing notochord sheath. In the caudal fin region, ALP and Oc signals were clearly produced both by the notochord epithelium and cells outside the notochord, the cartilaginous arches. Based on immunostaining, real time PCR and oc2:gfp transgenic fish, we identify Oc in the mineralizing notochord sheath as osteocalcin isoform 1 (Oc1).ConclusionsIf notochord mineralization occurs prior to arch formation, mineralization of the notochord sheath is ring-shaped. If notochord mineralization occurs after cartilaginous arch formation, mineralization of the notochord sheath starts at the insertion point of the arches, with a basiventral origin. The presence of ALP and Oc1, not only in cells outside the notochord, but also in the notochord epithelium, suggests an active role of the notochord in the mineralization process. The same may apply to Col II-positive chondrocytes of the caudalmost haemal arches that show ALP activity and Oc1 accumulation, since these chondrocytes do not mineralize their own cartilage matrix. Even without cartilaginous preformed vertebral centra, the cartilaginous arches may have an inductive role in vertebral centrum format...
Bone disorders affect millions of people worldwide and available therapeutics have a limited efficacy, often presenting undesirable side effects. As such, there is a need for novel molecules with bone anabolic properties. The aim of this work was to establish a rapid, reliable and reproducible method to screen for molecules with osteogenic activities, using the zebrafish operculum to assess bone formation. Exposure parameters were optimized through morphological analysis of the developing operculum of larvae exposed to calcitriol, a molecule with known pro-osteogenic properties. An exposure of 3 days initiated at 3 days post-fertilization was sufficient to stimulate operculum formation, while not affecting survival or development of the larvae. Dose-dependent pro-and anti-osteogenic effects of calcitriol and cobalt chloride, respectively, demonstrated the sensitivity of the method and the suitability of the operculum system. A double transgenic reporter line expressing fluorescent markers for early and mature osteoblasts was used to gain insights into the effects of calcitriol and cobalt at the cellular level, with osteoblast maturation shown to be stimulated and inhibited, respectively, in the operculum of exposed fish. The zebrafish operculum represents a consistent, robust and rapid screening system for the discovery of novel molecules with osteogenic, anti-osteoporotic or osteotoxic activity.
The ability of zebrafish to fully regenerate its caudal fin has been explored to better understand the mechanisms underlying de novo bone formation and to develop screening methods towards the discovery of compounds with therapeutic potential. Quantifying caudal fin regeneration largely depends on successfully measuring new tissue formation through methods that require optimization and standardization. Here, we present an improved methodology to characterize and analyse overall caudal fin and bone regeneration in adult zebrafish. First, regenerated and mineralized areas are evaluated through broad, rapid and specific chronological and morphometric analysis in alizarin red stained fins. Then, following a more refined strategy, the intensity of the staining within a 2D longitudinal plane is determined through pixel intensity analysis, as an indicator of density or thickness/volume. The applicability of this methodology on live specimens, to reduce animal experimentation and provide a tool for in vivo tracking of the regenerative process, was successfully demonstrated. Finally, the methodology was validated on retinoic acid- and warfarin-treated specimens, and further confirmed by micro-computed tomography. Because it is easily implementable, accurate and does not require sophisticated equipment, the present methodology will certainly provide valuable technical standardization for research in tissue engineering, regenerative medicine and skeletal biology.
Summary Lordosis and kyphosis are curvatures of the vertebral column that commonly affect Senegalese sole (Solea senegalensis) under intensive rearing conditions, constituting a problem for the aquaculture industry by increasing labor and operation costs and consequently reducing profits. However, no studies have yet addressed microanatomical changes in vertebral column curvature in this species. We have conducted histological analyses in order to determine the alterations at tissue and cellular levels in these deformities. Development of an ectopic cartilage‐like tissue within bone matrix at the growth regions (contact area between two vertebrae) of affected vertebrae was observed in lordotic‐kyphotic fish. As previously suggested, the increase in strain supported by deformed vertebrae may trigger the onset of metaplastic tissue formation through an osteochondroprogenitor precursor from the condensation of mesenchymal cells or by trans‐differentiation of (pre‐)osteoblastic cells to a chondrocytic lineage. The possibility of a notochord contribution, as well as the molecular events related to bone stress and bone types in terms of cellularity, are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.