Huntington's disease (HD) is an inherited neurodegenerative disorder caused by polyglutamine expansion mutations in the huntingtin protein. Despite its ubiquitous distribution, expression of mutant huntingtin (mHtt) is particularly detrimental to medium spiny neurons within the striatum. Mitochondrial dysfunction has been associated with HD pathogenesis. Here we review the current evidence for mHtt-induced abnormalities in mitochondrial dynamics and quality control, with a particular focus on brain and neuronal data pertaining to striatal vulnerability. We address mHtt effects on mitochondrial biogenesis, protein import, complex assembly, fission and fusion, mitochondrial transport, and on the degradation of damaged mitochondria via autophagy (mitophagy). For an integrated perspective on potentially converging pathogenic mechanisms, we also address impaired autophagosomal transport and abnormal mHtt proteostasis in HD.
Striatal neurons are vulnerable to Huntington's disease (HD). Decreased levels of acetylated alpha-tubulin and impaired mitochondrial dynamics, such as reduced motility and excessive fission, are associated with HD; however, it remains unclear whether and how these factors might contribute to the preferential degeneration of striatal neurons. Inhibition of the alpha-tubulin deacetylase HDAC6 has been proposed as a therapeutic strategy for HD, but remains controversial - studies in neurons show improved intracellular transport, whereas studies in cell-lines suggest it may impair autophagosome-lysosome fusion, and reduce clearance of mutant huntingtin (mHtt) and damaged mitochondria (mitophagy). Using primary cultures of rat striatal and cortical neurons, we show that mitochondria are intrinsically less motile and more balanced towards fission in striatal than in cortical neurons. Pharmacological inhibition of the HDAC6 deacetylase activity with tubastatin A (TBA) increased acetylated alpha-tubulin levels, and induced mitochondrial motility and fusion in striatal neurons to levels observed in cortical neurons. Importantly, TBA did not block neuronal autophagosome-lysosome fusion, and did not change mitochondrial DNA levels, suggesting no impairment in autophagy or mitochondrial clearance. Instead, TBA increased autophagic flux and reduced diffuse mHtt in striatal neurons, possibly by promoting transport of initiation factors to sites of autophagosomal biogenesis. This study identifies the pharmacological inhibition of HDAC6 deacetylase activity as a potential strategy to reduce the vulnerability of striatal neurons to HD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.