Our study aimed to assess the impact of sperm oxidative stress on embryo development by means of a dose-dependent model. In experiment 1, straws from five bulls were subjected to incubation with increasing H2O2 doses (0, 12.5, 25, and 50 μM). Motility parameters were evaluated by Computed Assisted System Analysis (CASA). Experiment 2 was designed to study a high (50 μM) and low dose (12.5 μM) of H2O2 compared to a control (0 μM). Samples were incubated and further used for in vitro fertilization. Analyses of motility (CASA), oxidative status (CellROX green and 2'-7' dichlorofluorescein diacetate), mitochondrial potential (JC-1), chromatin integrity (AO), and sperm capacitation status (chlortetracycline) were performed. Embryos were evaluated based on fast cleavage (30 h.p.i.), cleavage (D = 3), development (D = 5), and blastocyst rates (D = 8). We observed a dose-dependent deleterious effect of H2O2 on motility and increase on the percentages of positive cells for CellROX green, capacitated sperm, and AO. A decrease on cleavage and blastocyst rates was observed as H2O2 increased. Also, we detected a blockage on embryo development. We concluded that sperm when exposed to oxidative environment presents impaired motility traits, prooxidative status, and premature capacitation; such alterations resulting in embryo development fail.
Studies have reported the importance of mitochondria in sperm functionality. However, for some species, the glycolytic pathway appears to be as important as oxidative phosphorylation in ATP synthesis and sperm kinetics. These mechanisms have not been fully elucidated for bovine spermatozoa. Therefore, the aim of this study was to evaluate the role of mitochondria and the glycolytic pathway in ATP synthesis, sperm movement patterns, and oxidative homeostasis of epididymal spermatozoa in bovine specimens. We observed that mitochondrial uncoupling with protonophores significantly reduced ATP levels. However, these levels were reestablished after stimulation of the glycolytic pathway. We verified the same pattern of results for sperm kinetic variables and the production of reactive oxygen species (ROS). Thus, we suggest that, after its appropriate stimulation, the glycolytic pathway is capable of maintaining ATP levels, sperm kinetic patterns, and oxidative balance of bovine epididymal spermatozoa submitted to mitochondrial uncoupling.
Studies have demonstrated the importance of mitochondria to sperm functionality, as the main source of ATP for cellular homoeostasis and motility. However, the role of mitochondria on sperm metabolism is still controversial. Studies indicate that, for some species, glycolysis may be the main mechanism for sperm energy production. For ram sperm, such pathway is not clear. Thus, we evaluated ram sperm in response to mitochondrial uncoupling and glycolysis inhibition aiming to assess the importance of each pathway for sperm functionality. Statistical analysis was performed by the SAS System for Windows, using the General Linear Model Procedure. Data were tested for residue normality and variance homogeneity. A p < .05 was considered significant. Groups treated with the mitochondrial uncoupler Carbonyl cyanide 3 chlorophenylhydrazone (CCCP) showed a decrease in the percentage of cells with low mitochondrial activity and high mitochondrial membrane potential. We also observed that the highest CCCP concentration promotes a decrease in sperm susceptibility to lipid peroxidation. Regardless the lack of effect of CCCP on total motility, this substance induced significant alterations on sperm kinetics. Besides the interference of CCCP on spermatic movement patterns, it was also possible to observe such an effect in samples treated with the inhibitor of glycolysis (2-deoxy-d-glucose, DOG). Furthermore, treatment with DOG also led to a dose-dependent increase in sperm susceptibility to lipid peroxidation. Based on our results, we suggest that the glycolysis appears to be as important as oxidative phosphorylation for ovine sperm kinetics as this mechanism is capable of maintaining full motility when most of the cells have a low mitochondrial membrane potential. Furthermore, we found that changes in the glycolytic pathway trough glycolysis inhibition are likely involved in mitochondrial dysfunction and sperm oxidative unbalance.
ContentsThe fatty acid composition of the sperm membrane is an important factor involved in the overall sperm quality, including motility. However, in the canine species, the exact composition of the plasma membrane is still unknown. Therefore, the purpose of this study was to evaluate the plasma membrane lipid composition of motile sperm cells and to compare it with asthenospermic samples, as an attempt to determine possible involvements of membrane lipids in dog sperm cell motility. The sperm-rich fraction of ten mature dogs was collected, and samples were subjected to density gradient centrifugation by Percoll ® , in order to separate motile and asthenospermic samples.Processed semen samples were evaluated for sperm motility, plasma and acrosome membrane integrity, mitochondrial activity and susceptibility to oxidative stress. Lipid plasma membrane composition was identified by mass spectrometry (MALDI-MS).The motile sperm samples presented the following phospholipids in a high frequency in the plasma membrane: phosphatidylcholine 38:4 (composed of stearic and arachidonic fatty acids), phosphatidylcholine 36:1 (stearic and oleic fatty acids), phosphatidylethanolamine 34:4 (myristic and arachidonic fatty acids), glycerophosphatidic acid 36:4 (palmitic and arachidonic fatty acids), phosphatidylcholine 40:4 plasmanyl and phosphatidylcholine 40:5 plasmenyl. Furthermore, no lipid markers were found in the asthenospermic samples. Results also indicate that differences on plasma membrane composition between motile and asthenospermic samples are crucial factors for determining sperm motility, sperm functionality and susceptibility to oxidative stress. In conclusion, plasma membrane lipid composition varies considerable between motile and asthenospermic samples. Therefore, lipid markers of sperm motility can be considered, such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylcholine plasmanyl, phosphatidylcholine plasmenyl and phosphatidic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.