BackgroundBrazilian spotted fever (BSF), caused by the bacterium Rickettsia rickettsii, is the deadliest spotted fever of the world. In most of the BSF-endemic areas, capybaras (Hydrochoerus hydrochaeris) are the principal host for the tick Amblyomma cajennense, which is the main vector of BSF.MethodsIn 2012, a BSF case was confirmed in a child that was bitten by ticks in a residential park area inhabited by A. cajennense-infested capybaras in Itú municipality, southeastern Brazil. Host questing A. cajennense adult ticks were collected in the residential park and brought alive to the laboratory, where they were macerated and intraperitoneally inoculated into guinea pigs. A tick-inoculated guinea pig that presented high fever was euthanized and its internal organs were macerated and inoculated into additional guinea pigs (guinea pig passage). Tissue samples from guinea pig passages were also used to inoculate Vero cells through the shell vial technique. Infected cells were used for molecular characterization of the rickettsial isolate through PCR and DNA sequencing of fragments of three rickettsial genes (gltA, ompA, and ompB). Blood serum samples were collected from 172 capybaras that inhabited the residential park. Sera were tested through the immunofluorescence assay using R. rickettsii antigen.ResultsA tick-inoculated guinea pig presented high fever accompanied by scrotal reactions (edema and marked redness). These signs were reproduced by consecutive guinea pig passages. Rickettsia was successfully isolated in Vero cells that were inoculated with brain homogenate derived from a 3rd passage-febrile guinea pig. Molecular characterization of this rickettsial isolate (designated as strain ITU) yielded DNA sequences that were all 100% identical to corresponding sequences of R. rickettsii in Genbank. A total of 83 (48.3%) out of 172 capybaras were seroreactive to R. rickettsii, with endpoint titers ranging from 64 to 8192.ConclusionsA viable isolate of R. rickettsii was obtained from the tick A. cajennense, comprising the first viable R. rickettsi isolate from this tick species during the last 60 years. Nearly half of the capybara population of the residential park was seroreactive to R. rickettsii, corroborating the findings that the local A. cajennense population was infected by R. rickettsii.
In the laboratory, Amblyomma cajennense (Acari: Ixodidae) (Fabricius) larvae, nymphs and adults were exposed to Rickettsia rickettsii by feeding on needle-inoculated animals, and thereafter reared on uninfected guinea pigs or rabbits. Regardless of the tick stage that acquired the infection, subsequent tick stages were shown to be infected (confirming transstadial and transovarial transmissions) and were able to transmit R. rickettsii to uninfected animals, as demonstrated by serological and molecular analyses. However, the larval, nymphal and adult stages of A. cajennense were shown to be partially refractory to R. rickettsii infection, as in all cases, only part of the ticks became infected by this agent, after being exposed to rickettsemic animals. In addition, less than 50% of the infected engorged females transmitted rickettsiae transovarially, and when they did so, only part of the offspring became infected, indicating that vertical transmission alone is not enough to maintain R. rickettsii in A. cajennense for multiple generations. Finally, the R. rickettsii-infected tick groups had lower reproductive performance than the uninfected control group. Our results indicate that A. cajennense have a low efficiency to maintain R. rickettsii for successive generations, as R. rickettsii-infection rates should decline drastically throughout the successive tick generations.
This study compared the vector competence of four populations of Rhipicephalus sanguineus group ticks for the bacterium Ehrlichia canis, the agent of canine monocytic ehrlichiosis (CME). Ticks (larvae and nymphs) from the four populations—one from São Paulo state, southeastern Brazil (BSP), one from Rio Grande do Sul state, southern Brazil (BRS), one from Argentina (ARG), and one from Uruguay (URU)–were exposed to E. canis infection by feeding on dogs that were experimentally infected with E. canis. Engorged ticks (larvae and nymphs) were allowed to molt to nymphs and adults, respectively, which were tested by molecular analysis (E. canis-specific PCR assay) and used to infest naïve dogs. Through infestation of adult ticks on naïve dogs, after nymphal acquisition feeding on E. canis-infected dogs, only the BSP population was shown to be competent vectors of E. canis, i.e., only the dogs infested with BSP adult ticks developed clinical illness, seroconverted to E. canis, and yielded E. canis DNA by PCR. This result, demonstrated by two independent replications, is congruent with epidemiological data, since BSP ticks were derived from São Paulo state, Brazil, where CME is highly endemic. On the other hand, BRS, ARG, and URU ticks were derived from a geographical region (South America southern cone) where CME has never been properly documented. Molecular analysis of unfed adults at 30 days post molting support these transmission results, since none of the BRS, ARG, and URU ticks were PCR positive, whereas 1% of the BSP nymphs and 31.8% of the BSP adults contained E. canis DNA. We conclude that the absence or scarcity of cases of CME due to E. canis in the South America southern cone is a result of vector incompetence of the R. sanguineus group ticks that prevail on dogs in this part of South America.
We experimentally infected Amblyomma aureolatum ticks with the bacterium Rickettsia rickettsii, the etiologic agent of Rocky Mountain spotted fever (RMSF). These ticks are a vector for RMSF in Brazil. R. rickettsii was efficiently conserved by both transstadial maintenance and vertical (transovarial) transmission to 100% of the ticks through 4 laboratory generations. However, lower reproductive performance and survival of infected females was attributed to R. rickettsii infection. Therefore, because of the high susceptibility of A. aureolatum ticks to R. rickettsii infection, the deleterious effect that the bacterium causes in these ticks may contribute to the low infection rates (<1%) usually reported among field populations of A. aureolatum ticks in RMSF-endemic areas of Brazil. Because the number of infected ticks would gradually decrease after each generation, it seems unlikely that A. aureolatum ticks could sustain R. rickettsii infection over multiple successive generations solely by vertical transmission.
In the beginning of the 20th century, a new canine disease was reported in Brazil under the name "nambiuvú", whose etiological agent was called Rangelia vitalii, a distinct piroplasm that was shown to parasitize not only erythrocytes, but also leucocytes and endothelial cells. In this new century, more publications on R. vitalii were reported from Brazil, including an extensive study on its ultrastructural analysis, in addition to clinical, pathological, and epidemiological data on nambiuvú. However, a molecular analysis of R. vitalii has not been performed to date. In the present study, we performed molecular phylogenetic analyses of R. vitalii based on fragments of the genes 18S rRNA and the heat shock protein 70 (hsp70), amplified by PCR performed on blood samples derived from five clinical cases of dogs presumably infected with R. vitalii in southern Brazil. In addition, we examined Giemsa-stained thin blood smears from these same dogs. DNA sequences (604-bp) of the 18S rRNA gene obtained from the five dogs were identical to each other, and by Blast analysis, this sequence shared the highest degree of sequence identity (95%) with Babesia sp. China-BQ1. DNA sequences (1056-bp) of the hsp70 gene obtained from the five dogs were identical to each other, and by Blast analysis, this sequence shared the highest degree of sequence identity (87%) with Babesia bigemina. Phylogenetic analyses inferred from either of the two genes resulted in the newly genotype being placed in the Babesia spp. sensu stricto clade with very high bootstrap support (95-100%) in three analyses (Neighbor-Joining, Maximum parsimony, and Maximum likelihood). Giemsa-stained thin blood smears from the dogs were shown to contain piroplasm organisms within erythrocytes, monocytes and neutrophils (individual forms), and schizont-like forms within neutrophils, in accordance with literature reports of R. vitalii. Based on these results, we conclude that R. vitalii, the etiological agent of "nambiuvú" in southern Brazil, is a valid species of piroplasm. Further studies are required to evaluate the validity of the genus Rangelia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.