Although, the precise molecular mechanisms underlying Parkinson's disease (PD) are still elusive, it is now known that spreading of alpha-synuclein (aSyn) pathology and neuroinflammation are important players in disease progression. Here, we developed a novel microfluidic cell-culture platform for studying the communication between two different cell populations, a process of critical importance not only in PD but also in many biological processes. The integration of micro-valves in the device enabled us to control fluid routing, cellular microenvironments, and to simulate paracrine signaling. As proof of concept, two sets of experiments were designed to show how this platform can be used to investigate specific molecular mechanisms associated with PD. In one experiment, naïve H4 neuroglioma cells were co-cultured with cells expressing aSyn tagged with GFP (aSyn-GFP), to study the release and spreading of the protein. In our experimental set up, we induced the release of the contents of aSyn-GFP producing cells to the medium and monitored the protein's diffusion. In another experiment, H4 cells were co-cultured with N9 microglial cells to assess the interplay between two cell lines in response to environmental stimuli. Here, we observed an increase in the levels of reactive oxygen species in H4 cells cultured in the presence of activated N9 cells, confirming the cross talk between different cell populations. In summary, the platform developed in this study affords novel opportunities for the study of the molecular mechanisms involved in PD and other neurodegenerative diseases.
Parkinson's disease (PD) is a common age-associated neurodegenerative disorder. The protein α-synuclein (aSyn) is a key factor in PD both due to its association with familial and sporadic cases and because it is the main component of the pathological protein aggregates known as Lewy bodies. However, the precise cellular effects of aSyn aggregation are still elusive. Here, we developed an elastomeric microfluidic device equipped with a chemical gradient generator and 9 chambers containing cell traps to study aSyn production and aggregation in Saccharomyces cerevisiae. This study involved capturing single cells, exposing them to specific chemical environments and imaging the expression of aSyn by means of a GFP fusion (aSyn-GFP). Using a galactose (GAL) gradient we modulated aSyn expression and, surprisingly, by tracking the behavior of single cells, we found that the response of individual cells in a population to a given stimulus can differ widely. To study the combined effect of environmental factors and aSyn expression levels, we exposed cells to a gradient of FeCl3. We found a dramatic increase in the percentage of cells displaying aSyn inclusions from 27% to 96%. Finally, we studied the effects of ascorbic acid, an antioxidant, on aSyn aggregation and found a significant reduction in the percentage of cells bearing aSyn inclusions from 87% to 37%. In summary, the device developed here offers a powerful way of studying aSyn biology with single-cell resolution and high throughput using genetically modified yeast cells.
A multichannel microfluidic platform for real-time monitoring of epithelial barrier integrity by electrical impedance has been developed. Growth and polarization of human airway or gastrointestinal epithelial cells was continuously monitored...
Biomolecular detection systems based on microfluidics are often called lab-on-chip systems. To fully benefit from the miniaturization resulting from microfluidics, one aims to develop ‘from sample-to-answer’ analytical systems, in which the input is a raw or minimally processed biological, food/feed or environmental sample and the output is a quantitative or qualitative assessment of one or more analytes of interest. In general, such systems will require the integration of several steps or operations to perform their function. This review will discuss these stages of operation, including fluidic handling, which assures that the desired fluid arrives at a specific location at the right time and under the appropriate flow conditions; molecular recognition, which allows the capture of specific analytes at precise locations on the chip; transduction of the molecular recognition event into a measurable signal; sample preparation upstream from analyte capture; and signal amplification procedures to increase sensitivity. Seamless integration of the different stages is required to achieve a point-of-care/point-of-use lab-on-chip device that allows analyte detection at the relevant sensitivity ranges, with a competitive analysis time and cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.