Several approaches based on human gait have been proposed in the literature, either for medical research reasons, smart surveillance, human-machine interaction, or other purposes, whose validation highly depends on the access to common input data through available datasets, enabling a coherent performance comparison. The advent of depth sensors leveraged the emergence of novel approaches and, consequently, the usage of new datasets. In this work we present the GRIDDS-A Gait Recognition Image and Depth Dataset, a new and publicly available gait depth-based dataset that can be used mostly for person and gender recognition purposes.
Human motion analysis has proven to be a great source of information for a wide range of applications. Several approaches for a detailed and accurate motion analysis have been proposed in the literature, as well as an almost proportional number of dedicated datasets. The relatively recent arrival of depth sensors contributed to an increasing interest in this research area and also to the emergence of a new type of motion datasets. This work focuses on a systematic review of publicly available depth-based datasets, encompassing human gait data which is used for person recognition and/or classification purposes. We have conducted this systematic review using the Scopus database. The herein presented survey, which to the best of our knowledge is the first one dedicated to this type of datasets, is intended to inform and aid researchers on the selection of the most suitable datasets to develop, test and compare their algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.