Pedigrees and dense marker panels have been used to predict the genetic merit of individuals in plant and animal breeding, accounting primarily for the contribution of additive effects. However, nonadditive effects may also affect trait variation in many breeding systems, particularly when specific combining ability is explored. Here we used models with different priors, and including additive-only and additive plus dominance effects, to predict polygenic (height) and oligogenic (fusiform rust resistance) traits in a structured breeding population of loblolly pine (Pinus taeda L.). Models were largely similar in predictive ability, and the inclusion of dominance only improved modestly the predictions for tree height. Next, we simulated a genetically similar population to assess the ability of predicting polygenic and oligogenic traits controlled by different levels of dominance. The simulation showed an overall decrease in the accuracy of total genomic predictions as dominance increases, regardless of the method used for prediction. Thus, dominance effects may not be accounted for as effectively in prediction models compared with traits controlled by additive alleles only. When the ratio of dominance to total phenotypic variance reached 0.2, the additive–dominance prediction models were significantly better than the additive-only models. However, in the prediction of the subsequent progeny population, this accuracy increase was only observed for the oligogenic trait.
Resumo -O objetivo deste trabalho foi estimar os parâmetros genéticos e predizer o valor genético de populações e indivíduos oriundos de populações segregantes de trigo, com o uso da metodologia de modelos mistos ("restricted maximum likelihood"/"best linear unbiased prediction", REML/BLUP). Trinta e seis populações segregantes de trigo e quatro controles foram avaliados na geração F 3 , em delineamento de blocos ao acaso, com informações de indivíduo retiradas de dentro das parcelas. Os caracteres avaliados foram: produção de grãos, índice de colheita, número de perfilhos e altura de planta. Observou-se a existência de variabilidade genética entre populações em todos os caracteres avaliados. A herdabilidade média variou de 39,15 a 92,78%, e a acurácia, de 62,57 a 96,32%, na seleção de populações. A herdabilidade individual no sentido restrito foi baixa dentro das populações, em todos os caracteres. A acurácia na seleção individual apresentou magnitude média, quanto ao caráter altura de plantas, e baixa quanto aos demais caracteres. A herdabilidade individual contribui para maior ganho nos caracteres altura de planta e índice de colheita com o uso do BLUP individual, em comparação ao BLUP de populações. As populações segregantes Embrapa22/BRS207, Embrapa22/ VI98053, Embrapa22/IVI01041, BRS254/BRS207, BRS254/VI98053, BRS254/UFVT1Pioneiro e BRS264/ BRS207 destacam-se por apresentar valor genético aditivo elevado em dois ou mais caracteres.Termos para indexação: Triticum aestivum, análise de deviance, dados desbalanceados, estratégias de melhoramento, população segregante, REML/BLUP. Estimation of genetic parameters and prediction of additive genetic value for wheat by mixed modelsAbstract -The objective of this work was to estimate the genetic parameters and to predict the genotypic value of populations and individuals from wheat segregating populations, using the methodology of mixed models (restricted maximum likelihood/best linear unbiased prediction, REML/BLUP). Thirty-six wheat segregating populations and four controls were evaluated in the F 3 generation, in a randomized complete block design, with individual information taken from within the plots. The evaluated traits were: grain yield, harvest index, number of tillers, and plant height. Genetic variability between populations was observed for all evaluated traits. The mean heritability varied from 39.15 to 92.78%, and accuracy varied from 62.57 to 96.32% in the selection of populations. The narrow-sense individual heritability was low within populations for all traits. The accuracy for individual selection had a moderate value for plant height, and low values for the other traits. Individual heritability contributes to a greater gain for the traits plant height and harvest index with the use of individual BLUP, in comparison to population BLUP. The segregating populations Embrapa22/BRS207, Embrapa22/VI98053, Embrapa22/IVI01041, BRS254/BRS207, BRS254/VI98053, BRS254/UFVT1Pioneiro, and BRS264/BRS207 stand out with high additive genetic value, for two or mor...
The genetic merit of individuals can be estimated using models with dense markers and pedigree information. Early genomic models accounted only for additive effects. However, the prediction of non-additive effects is important for different forest breeding systems where the whole genotypic value can be captured through clonal propagation. In this study, we evaluated the integration of marker data with pedigree information, in models that included or ignored non-additive effects. We tested the models Reproducing Kernel Hilbert Spaces (RKHS) and BayesA, with additive and additive-dominance frameworks. Model performance was assessed for the traits tree height, diameter at breast height and rust resistance, measured in 923 pine individuals from a structured population of 71 full-sib families. We have also simulated a population with similar genetic properties and evaluated the performance of models for six simulated traits with distinct genetic architectures. Different cross validation strategies were evaluated, and highest accuracies were achieved using within family cross validation. The inclusion of pedigree information in genomic prediction models did not yield higher accuracies. The different RKHS models resulted in similar predictions accuracies, and RKHS and BayesA generated substantially better predictions than pedigree-only models. The additive-BayesA resulted in higher accuracies than RKHS for rust incidence and in simulated additive-oligogenic traits. For DBH, HT and additive-dominance polygenic traits, the RKHS- based models showed slightly higher accuracies than BayesA. Our results indicate that BayesA performs the best for traits with few genes with major effects, while RKHS based models can best predict genotypic effects for clonal selection of complex traits.
- (1965-1980, 1981-1990, 1991-2000 and 2001-2012). For each grouping, the previously described factors were also estimated. A total of 110 cultivars were studied and it was concluded that the genetic base of Brazilian irrigated rice cultivars is narrow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.