A new ellagitannin named cauliflorin (1), seven known hydrolyzable tannins (2-8), and six known phenolics (9-14) were isolated from jabuticaba. Compounds 2-8 had not been previously isolated from M. cauliflora fruits. The jabuticaba fruit was analyzed at four developmental stages for ellagitannins 1, 3, 7, and 8, phenolic acids 11 and 12, anthocyanins, organic acids, and sugars via HPLC-UV-DAD and NMRq. The content of ellagitannins and organic acids declined during fruit development, whereas at full ripeness sugar and anthocyanin levels underwent a sharp increase and were mainly constituted by fructose and cyanidin-3-O-glucose, respectively. Ellagitannins' profile varied considerably among fruit tissues, with pedunculagin (3), castalagin (7), and vescalagin (8) mostly concentrated in jabuticaba seeds, whereas cauliflorin (1) and anthocyanins accumulated in the peels. Changes in jabuticaba's phenolic compound contents were mostly influenced by fruit part (peel, pulp, and seed) rather than by degree of ripeness.
Cancer is the deadliest human disease and the development of new diagnosis methods is important to increase the chances of a cure. In this work it was developed a new method, named here for the first time as cerumenogram, using cerumen (earwax) as a new biomatrix for diagnosis. Earwax samples collected from cancer patients (cancer group) and cancer-free patients (control group) were analyzed by Headspace/Gas Chromatography-Mass Spectrometry (HS/GC-MS), following with multivariate analysis steps to process the raw data generated. In total, 158 volatile organic metabolites (VOMs) were identified in the cerumen samples. The 27 selected as potential VOMs biomarkers for cancer provided 100% discrimination between the cancer and control groups. This new test can thus be routinely employed for cancer diagnoses that is non-invasive, fast, cheap, and highly accurate.
An innovative volatolomic approach employs the detection of biomarkers present in cerumen (earwax) to identify cattle intoxication by Stryphnodendron rotundifolium Mart., Fabaceae (popularly known as barbatimão). S. rotundifolium is a poisonous plant with the toxic compound undefined and widely distributed throughout the Brazilian territory. Cerumen samples from cattle of two local Brazilian breeds ('Curraleiro Pé-Duro' and 'Pantaneiro') were collected during an experimental intoxication protocol and analyzed using headspace (HS)/GC-MS followed by multivariate analysis (genetic algorithm for a partial least squares, cluster analysis, and classification and regression trees). A total of 106 volatile organic metabolites were identified in the cerumen samples of bovines. The intoxication by S. rotundifolium influenced the cerumen volatolomic profile of the bovines throughout the intoxication protocol. In this way, it was possible to detect biomarkers for cattle intoxication. Among the biomarkers, 2-octyldecanol and 9-tetradecen-1-ol were able to discriminate all samples between intoxicated and nonintoxicated bovines. The cattle intoxication diagnosis by S. rotundifolium was accomplished by applying the cerumen analysis using HS/GC-MS, in an easy, accurate, and noninvasive way. Thus, the proposed bioanalytical chromatography protocol is a useful tool in veterinary applications to determine this kind of intoxication. K E Y W O R D S biomarkers, classification and regression trees, cluster analysis, genetic algorithm for a partial least squares, HS/GC-MS, volatile organic metabolites 1 | INTRODUCTION Livestock farming is one of the most important economic activities around the world. According to the United States Department of Agriculture, the cattle stocks in 2019 were 1.002 billion head (USDA, 2019). Due to this enormous number of animals, there is an immediate requirement for veterinary biomedical procedures to develop new analytical methods that can ensure the welfare and health of the animals. Thus, these new analytical methods aim at avoiding economic losses due to animal deaths by disorders and intoxication, as well as the spread of diseases that can affect humans by secondary contamination due to
The use of pyrethroids has increased over recent years, and corresponds to a higher exposure of animals to pesticide residues in the environment and diet. Here, an outbreak of pyrethroid poisoning in beef cattle was reported occurring in Midwestern Brazil. After veterinary evaluation, it was observed that the bovines presented common pyrethroid intoxication symptoms. Aiming to identify the cattle poising by pyrethroid, earwax samples were collected from two groups: exposed and nonexposed animals from the same farm. Blind earwax analyses of the bovines were carried out using headspace/gas chromatography–mass spectrometry (HS/GC–MS). The HS/GC–MS analysis detected the presence of bifenthrin in the earwax analysis of the exposed animals, confirmed by the comparison of its MS fragments with a bifenthrin standard, and also by its retention time relative to the internal standard. In summary, HS/GC–MS analysis of earwax emerges as a tool that can be used in the detection and monitoring of bifenthrin poisoning in cattle, as a useful veterinary diagnosis that ensures animal health and the safety of their products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.