We report an inelastic electron tunneling spectroscopy study on MgO magnetic junctions with thin barriers (0.85-1.35 nm). Inelastic electron tunneling spectroscopy reveals resonant electronic trapping within the barrier for voltages V>0.15 V. These trapping features are associated with defects in the barrier crystalline structure, as confirmed by high-resolution transmission electron microscopy. Such defects are responsible for resonant tunneling due to energy levels that are formed in the barrier. A model was applied to determine the average location and energy level of the traps, indicating that they are mostly located in the middle of the MgO barrier, in accordance with the high-resolution transmission electron microscopy data and trap-assisted tunneling conductance theory. Evidence of the influence of trapping on the voltage dependence of tunnel magnetoresistance is shown.
The introduction of voids in a magnetic thin-film alters the stray field distribution and enables the tailoring of the corresponding physical properties. Here we present a detailed study on thin magnetic nanohole arrays (NhAs) grown on top of hexagonally-ordered anodic aluminum oxide (AAO) substrates. We address the effect of AAO topography on the corresponding electrical and magneto-transport properties. Optimization of the AAO topography led to NhAs with improved resistance and magnetoresistance responses, while retaining their most important feature of enhanced coercivity. This opens new pathways for the growth of more complex structures on AAO substrates, a crucial aspect for their technological viability.
Articles you may be interested inNonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films Appl. Phys. Lett. 105, 153111 (2014); 10.1063/1.4898601Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications Electrical characteristics and carrier transport mechanisms of write-once-read-many-times memory elements based on graphene oxide diodes
Detailed measurements of the electrical resistivity ρ(T ), thermopower S(T ) and magnetization of Tb 5 (Si 0.5 Ge 0.5 ) 4 in the vicinity of the spin reorientation transitions observed in this compound are reported. Our results indicate a complex spin reorientation process associated with three different lattice sites occupied by the Tb ions. We identify two critical transition temperatures: one at T SR 1 = 57 K, as previously reported, and a new one at T SR 2 = 40 K. A simple model based on an approximate magnetic anisotropy energy is presented; it gives a satisfactory qualitative description of the main features of the reorientation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.