Corticotropin-releasing hormone (CRH) is produced and acts both within the central nervous system and at several peripheral sites. However, it is not known whether CRH is able to cross the blood-brain barrier (BBB) in either direction, or whether the central and peripheral compartments are independent. We studied the transport across the BBB of both human/rat CRH (hCRH) and ovine CRH (oCRH) using the native peptides labeled with 125I at the histidine residue, thereby avoiding the use of other synthetic modifications. No apparent transport of either hCRH or oCRH into the brain from blood was found, as measured by multiple-time regression analysis after intravenous injection of the labeled peptides. There were no significant differences between the two forms of the CRH peptide. However, both hCRH and oCRH were rapidly transported out of the brain after intracerebroventricular injection, with half-time (t½) disappearances of 11.1 (hCRH) and 15.1 min (oCRH); the transport rate was significantly different for the human and ovine forms. The transport of hCRH could be specifically inhibited by 5 nmol of unlabeled hCRH (t½ = 17.7 min) but not by the same dose of the synthetic analog αCRH12–41. The process could also be inhibited by pretreatment with aluminum chloride (t½ = 18.8 min). An indirect influence of the endogenous opiate modulating peptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2 5 nmol) was apparent by a change in the initial distribution within the brain. In conclusion, there is a specific unidirectional brain to blood transport system for CRH. This transport system in the mouse has a greater affinity for the human/rat than for the ovine form of the peptide, is inhibited by hCRH itself, and can be disrupted by pretreatment with aluminum. By facilitating the rapid clearance of central CRH, this transport system could be involved in the regulation of central CRH levels and could allow central CRH to reach the general circulation and act at peripheral sites.
The unidirectional brain-to-blood transport system for corticotropin-releasing hormone (CRH) across the blood-brain barrier could be instrumental in the homeostasis of central CRH. To characterize this system, the intracerebroventricular injection of 125I-CRH was used in mice. CRH was rapidly transported out of the brain with a half-time disappearance (t1/2) of 15 min, much faster than albumin (t1/2 = 50 min). Kinetic analysis revealed a saturable component with a low maximum velocity (apaproximately 0.020 nmol x min(-1) x brain(-1)) and low capacity (Michaelis constant approximately 1.4 nmol/brain). Transport was inhibited by verapamil, ouabain, and colchicine but not by cyclosporin. Transport was increased by corticosterone and inhibited by tumor necrosis factor-alpha and beta-endorphin. These results suggest that the specific unidirectional brain-to-blood transport system for CRH is dependent on energy and calcium channels, involves microtubules, is independent of the P-glycoprotein transporter, and is acutely modulated by adrenal steroids, cytokines, and endogenous opiates. This suggests its participation in the control of the stress response.
The blood-brain barrier (BBB) regulates the passage of substances between the brain and the periphery. It has not been shown that the secretion from the brain of a small amount of a substance can directly affect the periphery by transport across the BBB. We found that central injection of radioactively labeled corticotropin-releasing hormone (CRH) resulted in the accumulation of intact CRH in the spleen. CRH also increased splenic β-endorphin, an effect not blocked by pretreatment with dexamethasone. Inhibition of the secretion of CRH from the brain by colchicine resulted in decreased accumulation of CRH in the spleen and also decreased splenic β-endorphin. Similar findings occurred in the pituitary gland. The results show that the passage of labeled CRH from the brain can directly affect a peripheral organ, thus emphasizing the regulatory function of the BBB.
Development of some immune-mediated disorders may depend on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. To explore neuropsychologic mechanisms in relation to the abnormal endocrine reactivity in patients with systemic lupus erythematosus (SLE) and chronic hepatitis C (CHC) we used the corticotropin releasing hormone (CRH) test, the Minnesota Multiphasic Personality Inventory (MMPI), and the Edinburgh Inventory of Manual Preference Inventory (EIMP). Compared to controls, the adrenocorticotrophic hormone (ACTH) response to CRH was reduced in CHC, while SLE presented reduced baseline dehydroepiandrosterone sulfate levels; higher neurotic scores were found in SLE and higher behavior deviant scores in CHC. Peak ACTH levels were a significant factor for the MMPI profile variability, while the manual preference score was a significant factor for the ACTH response. Personality and manual preference contribute to neuroendocrine abnormalities. Different behavioral and neuroimmunoendocrine models emerge for these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.