Collaboration plays an increasingly important role in promoting research productivity and impact. What remains unclear is whether female and male researchers in science, technology, engineering, and mathematical (STEM) disciplines differ in their collaboration propensity. Here, we report on an empirical analysis of the complete publication records of 3,980 faculty members in six STEM disciplines at select U.S. research universities. We find that female faculty have significantly fewer distinct co-authors over their careers than males, but that this difference can be fully accounted for by females’ lower publication rate and shorter career lengths. Next, we find that female scientists have a lower probability of repeating previous co-authors than males, an intriguing result because prior research shows that teams involving new collaborations produce work with higher impact. Finally, we find evidence for gender segregation in some sub-disciplines in molecular biology, in particular in genomics where we find female faculty to be clearly under-represented.
How to quantify the impact of a researcher’s or an institution’s body of work is a matter of increasing importance to scientists, funding agencies, and hiring committees. The use of bibliometric indicators, such as the h-index or the Journal Impact Factor, have become widespread despite their known limitations. We argue that most existing bibliometric indicators are inconsistent, biased, and, worst of all, susceptible to manipulation. Here, we pursue a principled approach to the development of an indicator to quantify the scientific impact of both individual researchers and research institutions grounded on the functional form of the distribution of the asymptotic number of citations. We validate our approach using the publication records of 1,283 researchers from seven scientific and engineering disciplines and the chemistry departments at the 106 U.S. research institutions classified as “very high research activity”. Our approach has three distinct advantages. First, it accurately captures the overall scientific impact of researchers at all career stages, as measured by asymptotic citation counts. Second, unlike other measures, our indicator is resistant to manipulation and rewards publication quality over quantity. Third, our approach captures the time-evolution of the scientific impact of research institutions.
Many problems in nature can be conveniently framed as a problem of evolution of collective cooperative behaviour, often modelled resorting to the tools of evolutionary game theory in well-mixed populations, combined with an appropriate N-person dilemma. Yet, the well-mixed assumption fails to describe the population dynamics whenever individuals have a say in deciding which groups they will participate. Here we propose a simple model in which dynamical group formation is described as a result of a topological evolution of a social network of interactions. We show analytically how evolutionary dynamics under public goods games in finite adaptive networks can be effectively transformed into a N-Person dilemma involving both coordination and co-existence. Such dynamics would be impossible to foresee from more conventional 2-person interactions as well as from descriptions based on infinite, well-mixed populations. Finally, we show how stochastic effects help rendering cooperation viable, promoting polymorphic configurations in which cooperators prevail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.