An evaluation of the importance of geometrically nonlinear effects on the structural static analysis of steel cable-stayed bridges is presented. A finite element model is analyzed using linear, pseudo-linear and nonlinear methods. The pseudo-linear approach is based on the modified elastic modulus. The nonlinear analysis involves cable sag, large displacement and beam-column effects. The results confirm that both cable sag and large displacement originate the most important nonlinear effects in those structures. Beam-column effects are irrelevant for service loads. Both the pseudo-linear approach and the modified modulus element prove to be very limited or even inappropriate.
Abstract-Thispaper describes an analytical sensitivity analysis and optimization implementation for cable-stayed bridge design. The finite element software is based on the Vax/VMS version of the Modulef code [I MODULEF Reference Guide. INRIA (1992).] and was adapted to an IBM-PC compatible. The main focus of this research concerns the analytical sensitivity analysis developed on this platform. The cable-stayed bridge optimization is posed as a multiobjective optimization with goals of minimum cost of material, stresses and displacements. Cable anchor positions on the main girder and pylon and cross-sectional sizes of the structural members are dealt with as design variables. By using the maximum entropy formalism it is shown that a Pareto solution may be found indirectly by the unconstrained optimization of a scalar function. The validity and effectiveness of the proposed technique is examined by means of a three-span steel cable-stayed bridge. 0 1997 Civil
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.