Electronic systems possessing skin‐like morphology and functionalities (electronic skins [e‐skins]) have attracted considerable attention in recent years to provide sensory or haptic feedback in growing areas such as robotics, prosthetics, and interactive systems. However, the main focus thus far has been on the distributed pressure or force sensors. Herein a thermoreceptive e‐skin with biological systems like functionality is presented. The soft, distributed, and highly sensitive miniaturized (≈700 µm2) artificial thermoreceptors (ATRs) in the e‐skin are developed using an innovative fabrication route that involves dielectrophoretic assembly of oriented vanadium pentoxide nanowires at defined locations and high‐resolution electrohydrodynamic printing. Inspired from the skin morphology, the ATRs are embedded in a thermally insulating soft nanosilica/epoxy polymeric layer and yet they exhibit excellent thermal sensitivity (−1.1 ± 0.3% °C−1), fast response (≈1s), exceptional stability (negligible hysteresis for >5 h operation), and mechanical durability (up to 10 000 bending and twisting loading cycles). Finally, the developed e‐skin is integrated on the fingertip of a robotic hand and a biological system like reflex is demonstrated in response to temperature stimuli via localized learning at the hardware level.
High‐performance flexible electronics developed with resource efficient printing route will transform the way future electronics is manufactured and used to advance applications such as healthcare, Internet of Things, wearables, consumer electronics, etc. Herein, an innovative approach is presented that involves, for the first time, the in‐tandem use of contact and transfer printing methods to realize high‐quality electronic layers at selected locations on rigid (Si/SiO2), flexible (polyimide), and biodegradable (magnesium (Mg) foils). Superior grade quality of printed electronic layers is demonstrated by realizing transistors and printed UV photodetectors (PDs) employing high‐resolution electrohydrodynamic printing. The all‐printed PDs show extremely high performance for UV detection, with extraordinary high responsivity (>107 A W−1) and specific detectivity (≈1017 Jones) values at low UV intensity of 0.1 µW cm−2. Finally, the fabricated PDs on Mg foil are dissolved in deionized water at room temperature. Thus, in‐tandem contact and transfer printing has potential for ecofriendly development of transient electronics. Further, the approach allows printing of wide range of nanomaterials and heterostructures or complex superlattice structures, which can open exciting new possibilities for high‐performance electronics.
Printing technologies are changing the face of electronics with features such as resource-efficiency, low-cost, and novel form factors. While significant advances have been made in terms of organic electronics, the high-performance and stable transistors by printing, and their large-scale integration leading to fast integrated circuits remains a major challenge. This is because of the difficulties to print high-mobility semiconducting materials and the lack of high-resolution printing techniques. Herein, we present silicon based printed n-and p-channel transistors to demonstrate the possibility of developing high-performance complementary metal−oxide−semiconductor (CMOS) computing architecture. The direct roll transfer printing is used here for deterministic assembly of high-mobility single crystal silicon nanoribbons arrays on a flexible polyimide substrate. This is followed by high-resolution electrohydrodynamic printing to define source/drain/gate electrodes and to encapsulate, thus leading to printed devices. The printed transistors show effective peak mobilities of 15 cm 2 /(V s) (n-channel) and 5 cm 2 /(V s) (p-channel) at low 1 V drain bias. Furthermore, the effect of electrical, mechanical, and thermal stress on the performance and stability of the encapsulated transistors is investigated. The transistors showed stable transfer characteristics even after: (i) continuous 4000 transfer cycles, (ii) excruciating 10000 bending cycles at different bending radii (40, 25, and 15 mm), and (iii) between 15 and 60 °C temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.