We study deformations of Lie groupoids by means of the cohomology which controls them. This cohomology turns out to provide an intrinsic model for the cohomology of a Lie groupoid with values in its adjoint representation. We prove several fundamental properties of the deformation cohomology including Morita invariance, a van Est theorem, and a vanishing result in the proper case. Combined with Moser's deformation arguments for groupoids, we obtain several rigidity and normal form results.
We present some features of the smooth structure and of the canonical stratification on the orbit space of a proper Lie groupoid. One of the main features is that of Morita invariance of these structures—it allows us to talk about the canonical structure of differentiable stratified space on the orbispace (an object analogous to a separated stack in algebraic geometry) presented by the proper Lie groupoid. The canonical smooth structure on an orbispace is studied mainly via Spallek’s framework of differentiable spaces, and two alternative frameworks are then presented. For the canonical stratification on an orbispace, we extend the similar theory coming from proper Lie group actions. We make no claim to originality. The goal of these notes is simply to give a complementary exposition to those available and to clarify some subtle points where the literature can sometimes be confusing, even in the classical case of proper Lie group actions.
We introduce and study measures and densities (= geometric measures) on differentiable stacks, using a rather straightforward generalization of Haefliger's approach to leaf spaces and to transverse measures for foliations. In general we prove Morita invariance, a Stokes formula which provides reinterpretations in terms of (Ruelle-Sullivan type) algebroid currents, and a Van Est isomorphism. In the proper case we reduce the theory to classical (Radon) measures on the underlying space, we provide explicit (Weyl-type) formulas that shed light on Weinstein's notion of volumes of differentiable stacks; in particular, in the symplectic case, we prove the conjecture left open in [33]. We also revisit the notion of modular class and of Haar systems (and the existence of cut-off functions). Our original motivation comes from the study of Poisson manifolds of compact types [8,9,10], which provide two important examples of such measures: the affine and the Duistermaat-Heckman measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.