Abstract. This paper studies the practical impact of the branching heuristics used in Propositional Satisfiability (SAT) algorithms, when applied to solving real-world instances of SAT. In addition, different SAT algorithms are experimentally evaluated. The main conclusion of this study is that even though branching heuristics are crucial for solving SAT, other aspects of the organization of SAT algorithms are also essential. Moreover, we provide empirical evidence that for practical instances of SAT, the search pruning techniques included in the most competitive SAT algorithms may be of more fundamental significance than branching heuristics.
Abstract. This paper addresses the interaction between randomization, with restart strategies, and learning, an often crucial technique for proving unsatisfiability. We use instances of SAT from the hardware verification domain to provide evidence that randomization can indeed be essential in solving real-world satisfiable instances of SAT. More interestingly, our results indicate that randomized restarts and learning may cooperate in proving both satisfiability and unsatisfiability. Finally, we utilize and expand the idea of algorithm portfolio design to propose an alternative approach for solving hard unsatisfiable instances of SAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.