SUMMARYThis paper addresses the problem of cooperative path-following of multiple autonomous vehicles. Stated briefly, the problem consists of steering a group of vehicles along specified paths while keeping a desired spatial formation. For a given class of autonomous surface vessels, it is shown how Lyapunov-based techniques and graph theory can be brought together to design a decentralized control structure, where the vehicle dynamics and the constraints imposed by the topology of the inter-vehicle communication network are explicitly taken into account. To achieve path-following for each vehicle, a nonlinear adaptive controller is designed that yields convergence of the trajectories of the closed-loop system to the path in the presence of constant unknown ocean currents and parametric model uncertainty. The controller derived implicitly compensates for the effect of the ocean current without the need for direct measurements of its velocity. Vehicle cooperation is achieved by adjusting the speed of each vehicle along its path according to information exchanged on the positions of a subset of the other vehicles, as determined by the communication topology adopted. Global stability and convergence of the closed-loop system are guaranteed. Illustrative examples are presented and discussed.
SUMMARYThis paper addresses the problem of cooperative path-following of networked autonomous surface vessels with discrete-time periodic communications. The objective is to steer a group of autonomous vehicles along given spatial paths, while holding a desired inter-vehicle formation pattern. For a given class of marine vessels, we show how Lyapunov-based techniques, graph theory, and results from networked control systems can be brought together to yield a decentralized control structure where the dynamics of the cooperating vessels and the constraints imposed by the topology of the inter-vehicle communication network are explicitly taken into account. Cooperation is achieved by adjusting the speed of each vessel along its path according to information exchanged periodically on the positions of a subset of the other vessels, as determined by the communications topology adopted. The closed-loop system that is obtained by putting together the path-following and cooperation strategies takes an interconnected feedback form where both systems are input-to-state stable with respect to the outputs of each other. Using a small-gain theorem, stability and convergence of the overall system are guaranteed for adequate choices of the controller gains.
Shape memory alloys are used in a variety of fields, such as medical or aeronautical. Other fields of knowledge have been researching these materials, attracted by their capacity to dissipate energy through high-strain hysteretic cycles without significant residual strains. Because of these interesting properties for seismic protection, an example of the possible beneficiaries of these materials are civil engineering structures. This paper reports a bibliographic review on the characteristics and uniaxial macroscale constitutive models for shape memory alloys, of interest for a significant number of applications, most often based on wires and bars. The constitutive model assessment focuses on mechanical and kinetic laws, as well as on the energy balance law, of relevance for dynamic loadings. Some characteristics of these materials are still not sufficiently well known, especially those related to ageing. With regard to behaviour prediction, the most frequently used uniaxial constitutive models result in similar responses.
A series of investigations has been carried out over the last decade in Europe aimed at deriving quantitative information on site amplification from non-invasive techniques, based principally on surface wave interpretations of ambient noise measurements. The present paper focuses on their key outcomes regarding three main topics. First, methodological, hardware and software developments focusing on the acquisition and the processing of both single point and array microtremor measurements, led to an efficient tool with in situ control and processing, giving rise to robust and reproducible results. A special attention has been devoted to the derivation and use of the Rayleigh wave ellipticity. Second, the reliability of these new tools has been assessed through a thorough comparison with borehole measurements for a representative – though limited – set of sites located in Southern Europe, spanning from stiff to soft, and shallow to thick. Finally, correlations between the site parameters available from such non-invasive techniques, and the actual site amplification factors as measured with standard techniques, are derived from a comprehensive analysis of the Japanese KIKNET data. This allows to propose alternative, simple site characterization providing an improved variance reduction compared with the “classical” VS30 classification. While these results could pave the road for the next generation of building codes, they can also be used now for regulatory site classification and microzonation studies, in view of improved mapping and estimation of site amplification factors, and for the characterization of existing strong motion sites
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.