HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.