Photodynamic therapy (PDT), based on the photoactivation of photosensitizers (PSs), has become a well-studied therapy for cancer. Photofrin®, belonging to the first generation of PS, is still widely used for the treatment of different kinds of cancers; however, it has several drawbacks that significantly limit its general clinical use. Consequently, there has been extensive research on the design of PS molecules with optimized pharmaceutical properties, with aiming of overcoming the disadvantages of traditional PS, such as poor chemical purity, long half-life, excessive accumulation into the skin, and low attenuation coefficients. The rational design of novel PS with desirable properties has attracted considerable research in the pharmaceutical field. This review presents an overview on the classical photosensitizers and the most significant recent advances in the development of PS with regard to their potential application in oncology.
The use of microwave-assisted synthesis (in water) of α-Fe 2 O 3 nanomaterials followed by their transformation onto iron oxide Fe 3 O 4 -γ-Fe 2 O 3 hollow nanoparticles encoding well-defined sizes and shapes [nanorings (NRs) and nanotubes (NTs)] is henceforth described. The impact of experimental variables such as concentration of reactants, volume of solvent employed, and reaction times/temperatures during the shape-controlled synthesis revealed that the key factor that gated generation of morphologically diverse nanoparticles was associated to the initial concentration of phosphate anions employed in the reactant mixture. All the nanomaterials presented were fully characterized by powder X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Mossbauer spectroscopy, and superconducting quantum interference device (SQUID). The hollow nanoparticles that expressed the most promising magnetic responses, NTs and NRs, were further tested in terms of efficiencies in controlling the magnetic hyperthermia, in view of their possible use for biomedical applications, supported by their excellent viability as screened by in vitro cytotoxicity tests. These systems NTs and NRs expressed very good magneto-hyperthermia properties, results that were further validated by micromagnetic simulations. The observed specific absorption rate (SAR) and intrinsic loss power of the NRs and NTs peaked the values of 340 W/g and 2.45 nH m 2 kg −1 (NRs) and 465 W/g and 3.3 nH m 2 kg −1 (NTs), respectively, at the maximum clinical field 450 Oe and under a frequency of 107 kHz and are the highest values among those reported so far in the hollow iron-oxide family. The higher SAR in NTs accounts the importance of magnetic shape anisotropy, which is well-predicted by the modified dynamic hysteresis (β-MDH) theoretical model.
Photodynamic therapy (PDT) is a technique employed in the treatment of several superficial infections, such as caries. PDT uses a non-toxic drug termed photosensitizer (PS) followed by light irradiation. The cytotoxic effects of the therapy are related to the production of reactive species produced after light activation of a photosensitizer, which reacts with surrounding molecules and disrupts several of the cell's functions. Within this context, this study aimed to develop a clinical protocol involving PDT application mediated by aluminum-chloride-phthalocyanine (AlClPc) entrapped in cationic liposomes against cariogenic bacteria in caries lesions. Cationic liposomes were used to delivery AlClPc preferentially to bacterial cells due to the strong anionic superficial charges of these cell types. The results are represented in two fundamental steps: (1) in vitro evaluation of AlClPc delivery to cariogenic bacteria and pulp cells, as well as its potential phototoxicity; (2) a clinical study involving volunteer patients that were treated with the PDT protocol mediated by AlClPc-cationic liposome. The main results showed that the AlClPc-cationic liposome was preferentially absorbed by bacterial cells compared to eukaryotic dental pulp cells, and it was efficient in the reduction of microbial load from bacterial cultures. In addition, the clinical study showed a mean reduction of 82% of total bacterial in the treated cavities after PDT application. Taken together, the results presented in this study showed that the antimicrobial PDT protocol mediated by cationic liposomes containing AlClPc is safety for clinical application and is efficient in the reduction of bacterial load in caries lesions.
Background: Metastasis causes the most breast cancer-related deaths in women. Here, we investigated the antitumor effect of solid lipid nanoparticles (SLN-DTX) when used in the treatment of metastatic breast tumors using 4T1-bearing BALB/c mice. Results: Solid lipid nanoparticles (SLNs) were produced using the high-energy method. Compritol 888 ATO was selected as the lipid matrix, and Pluronic F127 and Span 80 as the surfactants to stabilize nanoparticle dispersion. The particles had high stability for at least 120 days. The SLNs' dispersion size was 128 nm, their polydispersity index (PDI) was 0.2, and they showed a negative zeta potential. SLNs had high docetaxel (DTX) entrapment efficiency (86%), 2% of drug loading and showed a controlled drug-release profile. The half-maximal inhibitory concentration (IC 50) of SLN-DTX against 4T1 cells was more than 100 times lower than that of free DTX after 24 h treatment. In the cellular uptake test, SLN-DTX was taken into the cells significantly more than free DTX. The accumulation in the G2-M phase was significantly higher in cells treated with SLN-DTX (73.7%) than in cells treated with free DTX (23.0%), which induced subsequent apoptosis. TEM analysis revealed that SLN-DTX internalization is mediated by endocytosis, and fluorescence microscopy showed DTX induced microtubule damage. In vivo studies showed that SLN-DTX compared to free docetaxel exhibited higher antitumor efficacy by reducing tumor volume (p < 0.0001) and also prevented spontaneous lung metastasis in 4T1 tumor-bearing mice. Histological studies of lungs confirmed that treatment with SLN-DTX was able to prevent tumor. IL-6 serum levels, ki-67 and BCL-2 expression were analyzed and showed a remarkably strong reduction when used in a combined treatment. Conclusions: These results indicate that DTX-loaded SLNs may be a promising carrier to treat breast cancer and in metastasis prevention.
Photodynamic therapy is generally considered to be safer than conventional anticancer therapies, and it is effective against different kinds of cancer. However, its clinical application has been significantly limited by the hydrophobicity of photosensitizers. In this work, a system composed of the hydrophobic photosensitizer aluminum–phthalocyanine chloride (AlPc) associated with water dispersible poly(methyl vinyl ether-co-maleic anhydride) nanoparticles is described. AlPc was associated with nanoparticles produced by a method of solvent displacement. This system was analyzed for its physicochemical characteristics, and for its photodynamic activity in vitro in cancerous (murine mammary carcinoma cell lineage 4T1, and human mammary adenocarcinoma cells MCF-7) and noncancerous (murine fibroblast cell lineage NIH/3T3, and human mammary epithelial cell lineage MCF-10A) cell lines. Cell viability and the elicited mechanisms of cell death were evaluated after the application of photodynamic therapy. This system showed improved photophysical and photochemical properties in aqueous media in comparison to the free photosensitizer, and it was effective against cancerous cells in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.