In ascending aorta aneurysms (AscAA) the whole vessel wall dilates, while in aortic dissections (AD) the wall cleaves into two sheets. Both may present fine elastic fragmentation and a decrease in collagen. We analyzed whether alterations in the three-dimensional structure of these fibers could be involved in the pathogenesis of AscAA/AD. Specimens obtained at surgery for these diseases (n = 4 for each) and on coronary artery bypass surgery (controls, n = 4) were submitted to treatments which either preserve collagen or the elastic structure. These samples were examined by scanning electron microscopy. In all groups most of the collagen fibers were packed, forming laminar structures very similar to the elastic lamellae. In AscAA/AD, the fibers showed signs of degradation and/or fragmentation. Elastic tissue was distributed in large sheets with fenestrations, with smaller branches between them. In 1 of the dissection cases and 2 of the aneurysm cases elastic sheet fragmentation, which under light microscopy seems to be located at random, had a pattern of clefts which were irregular but approximately transversal to the main axis of the wall. The recognition of this pattern and the degradation/fragmentation of collagen and elastic fibrils facilitates understanding of why the wall is weak and affected by aneurysms and dissections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.