O objetivo deste trabalho foi estudar o comportamento da precipitação pluvial no período da estação chuvosa na região de Diamantina, MG. Dados de precipitação pluviométrica mensal, da série histórica de 1977 a 2006, foram utilizados e averiguada a probabilidade para várias classes de precipitação, através da função de frequência acumulada, usando-se a metodologia da distribuição Weibull com averiguação de aderência pelo teste Kolmogorov-Smirnov com nível de significância de 5%; de classes definidas em função de percentis predeterminados. Os resultados mostram que a estação chuvosa, compreendida entre outubro e março, representa 88% do total precipitado anual. Os meses de janeiro e dezembro apontam as maiores probabilidades de ocorrência de precipitação com 220,1 mm e 167,8 mm, respectivamente, a nível de 25% de probabilidade de ocorrência. O modelo de distribuição Weibull apresentou bom ajuste da série climatológica para estudos probabilísticos mostrando os parâmetros dentro dos limites estatísticos preestabelecidos.
ResumoCom base em uma série temporal anual de produção de celulose de fibra curta no Brasil no período de 1950 a 2009, o presente trabalho objetivou analisar a eficiência da metodologia Box & Jenkins em prever a produção. O modelo mais adequado foi escolhido com base nos critérios de AIC e SCH, na significância dos coeficientes, no princípio de parcimônia e no comportamento dos resíduos. Pelos resultados, conclui-se que o modelo ARIMA (2,2,1) é adequado para prever a produção de celulose de fibra curta no Brasil. Palavras-chave: Celulose de fibra curta; séries temporais; metodologia Box & Jenkins. Abstract Projections of short fiber cellulose production in Brazil.Based on an annual production series of hardwood pulp in Brazil from 1950 to 2009, this study aimed to analyze efficiency of the Box & Jenkins methodology to forecast production. The most appropriate model was chosen based on the AIC and SCH criteria, on the significance of coefficients, on the principle of parsimony and residual behavior. The results points to the ARIMA (2,2,1) model as the most adequate to forecast the hardwood pulp production in Brazil.
Currently, public and private resources are directed towards the development of Research and Development (R&D) projects in the Brazilian forestry area. But, many times, such investments are used only as corporate advertising, without the knowledge of their real return, underestimating the importance of R&D in the development of organizations in this sector. Hence the importance of studies that seek to evaluate investment returns and how profitable they are for society and for technological innovation. The objective of this study was to evaluate the possible economic return of R&D in the Brazilian Forest Sector, in particular, its effects on increasing the productivity of pine and eucalyptus stands. Through the publications of the Statistical Yearbook of the Brazilian Association of Planted Forest Producers (ABRAF) it was possible to understand the relationship between investments in R&D, planted area and annual current wood productivity, using an indicator that related Investments and Revenue in the R&D of organizations Brazilian forestry companies of this Association. It can be inferred that for every R $ 1.00 invested in R&D projects, an average return of R $ 16.02 is obtained in such organizations. It was also concluded that the marginal gains in annual wood productivity correlated positively and significantly with investments in R&D (r = 0.43). Thus, investments in R&D made by silvicultural organizations translate into an economic return for them, as well as that their absence can stagnate the increase in wood productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.