Nanoparticles are anticipated to overcome persistent challenges in efficient drug delivery, but the limitations associated with conventional methods of preparation are resulting in slow translation from research to clinical applications. Due to their enormous potential, microfluidic technologies have emerged as an advanced approach for the development of drug delivery systems with well-defined physicochemical characteristics and in a reproducible manner. Areas covered: This review provides an overview of microfluidic devices and materials used for their manufacturing, together with the flow patterns and regimes commonly used for nanoparticle preparation. Additionally, the different geometries used in droplet microfluidics are reviewed, with particular attention to the co-flow geometry used for the production of nanoparticles. Finally, this review summarizes the main and most recent nanoparticulate systems prepared using microfluidics, including drug nanosuspensions, polymeric, lipid, structured, and theranostic nanoparticles. Expert opinion: The production of nanoparticles at industrial scale is still a challenge, but the microfluidic technologies bring exciting opportunities to develop drug delivery systems that can be engineered in an easy, cost-effective and reproducible manner. As a highly interdisciplinary research field, more efforts and general acceptance are needed to allow for the translation of nanoparticulate drug delivery systems from academic research to the clinical practice.
Oxidative stress and abnormally high levels of reactive oxygen species (ROS) play an essential role in the pathogenesis and progression of inflammatory bowel disease (IBD). Oxidation‐responsive nanoparticles (NPs) are formulated from a phenylboronic esters‐modified dextran (OxiDEX) that degrades selectively in response to hydrogen peroxide (H2O2). OxiDEX NPs are coated with chitosan and encapsulated in a pH‐sensitive polymer to produce nano‐in‐micro composites. The microparticles are spherical with homogeneous particle size (53 ± 3 µm) and maintain integrity at acidic pH, preventing the premature release of the NPs in gastric conditions. The degradation of NPs is highly responsive to the level of H2O2, and the release of the drug is sustained in the presence of physiologically relevant H2O2 concentrations. The presence of chitosan on the particles surface significantly enhances NPs stability in intestinal pH and their adhesion on the intestinal mucosa. Compared to a traditional enteric formulation, this formulation shows tenfold decreased drug permeability across C2BBe1/HT29‐MTX cell monolayer, implying that lower amount of drug would be absorbed to the blood stream and, therefore, limiting the undesired systemic side effects. Based on these results, a successful nano‐in‐micro composite for targeted therapy of IBD is obtained by combination of the responsiveness to pH and ROS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.