Significance and Impact of the Study: The synergistic combinations of EDTA and cuminaldehyde or indole-3-carbinol were effective against single-and dual-species E. coli and S. epidermidis planktonic cells and biofilms. The overall results highlight the role of phytochemical products as a green and sustainable source of antimicrobial potentiators to control bacteria in both planktonic and sessile states. AbstractThe aim of this study was the development of a novel and effective antibacterial formulation combining selected phytochemical compounds (quercetin, cuminaldehyde, indole-3-carbinol and vanillic acid) with ethylenediaminetetraacetic acid (EDTA), an aminopolycarboxylic acid. The antibacterial activity of the combinations was evaluated against Escherichia coli and Staphylococcus epidermidis in planktonic and sessile states as single and dual species. The compounds when applied individually demonstrated modest antibacterial activity. Nevertheless, synergy was observed when EDTA was combined with the selected phytochemicals, particularly with cuminaldehyde and indole-3-carbinol. These combinations were evaluated against single-and dual-species biofilms. An inactivation of 100% was obtained for almost all the biofilms, with E. coli biofilms showing the highest resistance. This study allowed the discovery of novel formulations of phytochemical compounds with antibacterial activity against E. coli and S. epidermidis single-and dual-species biofilms at concentrations close to the minimum bactericidal concentration.Letters in Applied Microbiology 68, 313--320
Homochirality is a fundamental feature of living systems, and its origin is still an unsolved mystery. Previous investigations showed that external physical forces can bias a spontaneous symmetry breaking process towards deterministic enantioselection. But can the macroscopic shape of a reactor play a role in chiral symmetry breaking processes? Here we show an example of chirality transfer from the chiral shape of a 3D helical channel to the chirality of supramolecular aggregates, with the handedness of the helical channel dictating the direction of enantioselection in the assembly of an achiral molecule. By combining numerical simulations of fluid flow and mass transport with experimental data, we demonstrated that the chiral information is transferred top-down thanks to the interplay between the hydrodynamics of asymmetric secondary flows and the precise spatiotemporal control of reagent concentration fronts. This result shows the possibility of controlling enantioselectively molecular processes at the nanometer scale by modulating the geometry and the operating conditions of fluidic reactors.
To date, crystallization studies conducted in space laboratories, which are prohibitively costly and unsuitable to most research laboratories, have shown the valuable effects of microgravity during crystal growth and morphogenesis. Herein, an easy and highly efficient method is shown to achieve space‐like experimentation conditions on Earth employing custom‐made microfluidic devices to fabricate 2D porous crystalline molecular frameworks. It is confirmed that experimentation under these simulated microgravity conditions has unprecedented effects on the orientation, compactness and crack‐free generation of 2D porous crystalline molecular frameworks as well as in their integration and crystal morphogenesis. It is believed that this work will provide a new “playground” to chemists, physicists, and materials scientists that desire to process unprecedented 2D functional materials and devices.
Control over the functionalization of graphenic materials is key to enable their full application in electronic and optical technologies. Covalent functionalization strategies have been proposed as an approach to tailor the interfaces’ structure and properties. However, to date, none of the proposed methods allow for a covalent functionalization with control over the grafting density, layer thickness and/or morphology, which are key aspects for fine-tuning the processability and performance of graphenic materials. Here, we show that the no-slip boundary condition at the walls of a continuous flow microfluidic device offers a way to generate controlled chemical gradients onto a graphenic material with 2D and 3D control, a possibility that will allow the sophisticated functionalization of these technologically-relevant materials.
Fine control over the growth of materials is required to precisely tailor their properties. Spatial atomic layer deposition (SALD) is a thin-film deposition technique that has recently attracted attention because it allows producing thin films with a precise number of deposited layers, while being vacuum-free and much faster than conventional atomic layer deposition. SALD can be used to grow films in the atomic layer deposition or chemical vapor deposition regimes, depending on the extent of precursor intermixing. Precursor intermixing is strongly influenced by the SALD head design and operating conditions, both of which affect film growth in complex ways, making it difficult to predict the growth regime prior to depositions. Here, we used numerical simulation to systematically study how to rationally design and operate SALD systems for growing thin films in different growth regimes. We developed design maps and a predictive equation allowing us to predict the growth regime as a function of the design parameters and operation conditions. The predicted growth regimes match those observed in depositions performed for various conditions. The developed design maps and predictive equation empower researchers in designing, operating, and optimizing SALD systems, while offering a convenient way to screen deposition parameters, prior to experimentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.