Agrimony (Agrimonia eupatoria L.) (Ae) is used in traditional medicine to treat inflammatory and oxidative related diseases. Therefore, this study focuses on the anti-inflammatory and analgesic potential of Ae infusion (AeI). Phenolic compounds characterization was achieved by HPLC-PDA-ESI/MSn. To evaluate antioxidant potential, 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide anion, hydroxyl radical, and SNAP assays were used. In vitro anti-inflammatory activity of AeI was investigated in LPS-stimulated macrophages by measuring the NO production. In vivo anti-inflammatory activity was validated using the mouse carrageenan-induced paw edema model. Peripheral and central analgesic potential was evaluated using the acetic acid-induced writhing and hot-plate tests, respectively, as well as the formalin assay to assess both activities. The safety profile was disclosed in vitro and in vivo, using MTT and hematoxylin assays, respectively. Vitexin, quercetin O-galloyl-hexoside, and kaempferol O-acetyl-hexosyl-rhamnoside were referred to in this species for the first time. AeI and mainly AePF (Ae polyphenolic fraction) showed a significant antiradical activity against all tested radicals. Both AeI and AePF decreased NO levels in vitro, AePF being more active than AeI. In vivo anti-inflammatory and analgesic activities were verified for both samples at concentrations devoid of toxicity. Agrimony infusion and, mainly, AePF are potential sources of antiradical and anti-inflammatory polyphenols.
Background
Sepsis is an emergency medical condition that can lead to death and it is defined as a life-threatening organ dysfunction caused by immune dysregulation in response to an infection. It is considered the main killer in intensive care units. Sepsis associated-encephalopathy (SAE) is mostly caused by a sepsis-induced systemic inflammatory response. Studies report SAE in 14–63% of septic patients. Main SAE symptoms are not specific and usually include acute impairment of consciousness, delirium and/or coma, along with electroencephalogram (EEG) changes. For those who recover from sepsis and SAE, impaired cognitive function, mobility and quality of life are often observed months to years after hospital discharge, and there is no treatment available today to prevent that. Inflammation and oxidative stress are key players for the SAE pathophysiology. Gold nanoparticles have been demonstrated to own important anti-inflammatory properties. It was also reported 20 nm citrate-covered gold nanoparticles (cit-AuNP) reduce oxidative stress. In this context, we tested whether 20 nm cit-AuNP could alleviate the acute changes caused by sepsis in brain of mice, with focus on inflammation. Sepsis was induced in female C57BL/6 mice by cecal ligation and puncture (CLP), 20 nm cit-AuNP or saline were intravenously (IV) injected 2 h after induction of sepsis and experiments performed 6 h after induction. Intravital microscopy was used for leukocyte and platelet adhesion study in brain, blood brain barrier (BBB) permeability carried out by Evans blue assay, cytokines measured by ELISA and real time PCR, cell adhesion molecules (CAMs) by flow cytometry and immunohistochemistry, and transcription factors, by western blotting.
Results
20 nm cit-AuNP treatment reduced leukocyte and platelet adhesion to cerebral blood vessels, prevented BBB failure, reduced TNF- concentration in brain, and ICAM-1 expression both in circulating polymorphonuclear (PMN) leukocytes and cerebral blood vessels of mice with sepsis. Furthermore, 20 nm cit-AuNP did not interfere with the antibiotic effect on the survival rate of mice with sepsis.
Conclusions
Cit-AuNP showed important anti-inflammatory properties in the brain of mice with sepsis, being a potential candidate to be used as adjuvant drug along with antibiotics in the treatment of sepsis to avoid SAE
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.