BackgroundProstate cancer (PCa), a highly incident and heterogeneous malignancy, mostly affects men from developed countries. Increased knowledge of the biological mechanisms underlying PCa onset and progression are critical for improved clinical management. MicroRNAs (miRNAs) deregulation is common in human cancers, and understanding how it impacts in PCa is of major importance. MiRNAs are mostly downregulated in cancer, although some are overexpressed, playing a critical role in tumor initiation and progression. We aimed to identify miRNAs overexpressed in PCa and subsequently determine its impact in tumorigenesis.ResultsMicroRNA expression profiling in primary PCa and morphological normal prostate (MNPT) tissues identified 17 miRNAs significantly overexpressed in PCa. Expression of three miRNAs, not previously associated with PCa, was subsequently assessed in large independent sets of primary tumors, in which miR-182 and miR-375 were validated, but not miR-32. Significantly higher expression levels of miR-375 were depicted in patients with higher Gleason score and more advanced pathological stage, as well as with regional lymph nodes metastases. Forced expression of miR-375 in PC-3 cells, which display the lowest miR-375 levels among PCa cell lines, increased apoptosis and reduced invasion ability and cell viability. Intriguingly, in 22Rv1 cells, which displayed the highest miR-375 expression, knockdown experiments also attenuated the malignant phenotype. Gene ontology analysis implicated miR-375 in several key pathways deregulated in PCa, including cell cycle and cell differentiation. Moreover, CCND2 was identified as putative miR-375 target in PCa, confirmed by luciferase assay.ConclusionsA dual role for miR-375 in prostate cancer progression is suggested, highlighting the importance of cellular context on microRNA targeting.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-015-0076-2) contains supplementary material, which is available to authorized users.
Prostate cancer (PCa), a leading cause of cancer-related morbidity and mortality, arises through the acquisition of genetic and epigenetic alterations. Deregulation of histone methyltransferases (HMTs) or demethylases (HDMs) has been associated with PCa development and progression. However, the precise influence of altered HMTs or HDMs expression and respective histone marks in PCa onset and progression remains largely unknown. To clarify the role of HMTs and HDMs in prostate carcinogenesis, expression levels of 37 HMTs and 20 HDMs were assessed in normal prostate and PCa tissue samples by RT-qPCR. SMYD3, SUV39H2, PRMT6, KDM5A, and KDM6A were upregulated, whereas KMT2A-E (MLL1-5) and KDM4B were downregulated in PCa, compared with normal prostate tissues. Remarkably, PRMT6 was the histone modifier that best discriminated normal from tumorous tissue samples. Interestingly, EZH2 and SMYD3 expression levels significantly correlated with less differentiated and more aggressive tumors. Remarkably, SMYD3 expression levels were of independent prognostic value for the prediction of disease-specific survival of PCa patients with clinically localized disease submitted to radical prostatectomy. We concluded that expression profiling of HMTs and HDMs, especially SMYD3, might be of clinical usefulness for the assessment of PCa patients and assist in pre-therapeutic decision-making.
To characterize the pattern of ETS rearrangements and to uncover novel ETS fusion genes, we analyzed 200 prostate carcinomas (PCa) with TaqMan low-density arrays (TLDAs), followed by selective analyses with fluorescence in situ hybridization (FISH), RT-PCR, and sequencing. Besides confirming the recurrent presence of ERG, ETV1, ETV4, and ETV5 rearrangements, we here report FLI1 as the fifth ETS transcription factor involved in fusion genes in prostate cancer. Outlier expression of the FLI1 gene was detected by TLDAs in one PCa that showed relative overexpression of FLI1 exons 4:5 as compared with FLI1 exons 2:3. A structural rearrangement was found using FISH probes flanking the FLI1 gene and RT-PCR and sequencing analyses showed fusion of SLC45A3 exon 1 with FLI1 exon 3. Interestingly, we found four cases with two different ETS rearrangements in the index tumor, thus revealing intratumor genetic heterogeneity. Correlation analysis with clinico-pathological data showed association of ERG rearrangements with locally advanced disease (pT3, P = 0.007) and MYC overexpression (P = 0.001), and association of ETV1 rearrangements with PTEN downregulation (P = 0.015). We report that FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer and that intratumor genetic heterogeneity of ETS rearrangements can occasionally be found in index primary tumors.
Disruption of microRNA (miRNA) expression patterns is now being recognized as a hallmark of human cancer. The causes of these altered profiles are diverse, and, among them, we found the existence of defects in the miRNA processing machinery. However, little is known about how these alterations affect the biology of the underlying tumors. Herein, we show that colorectal cancer cells with an impairment in DICER1, a major miRNA biogenesis gene, undergo enrichment of tumor stemness features and an epithelial-to-mesenchymal transition. These phenotypes are associated with the downregulation of miRNAs, such as miR-34a, miR-126 and those of the miR-200 family, that target critical coding genes in these pathways. Most importantly, DICER1 impairment also induces the acquisition of a greater capacity for tumor initiation and metastasis, two properties associated with cancer stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.