Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a “flip-flop” phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.
Brazil is a country of continental dimension with a population of different ethnic backgrounds. Thus, a wide variation in the frequencies of hepatitis C virus (HCV) genotypes is expected to occur. To address this point, 1,688 sequential samples from chronic HCV patients were analyzed. HCV-RNA was amplified by the RT-PCR from blood samples collected from 1995 to 2000 at different laboratories located in different cities from all Brazilian States. Samples were collected in tubes containing a gel separator, centrifuged in the site of collection and sent by express mail in a refrigerated container to Laboratório Bioquímico Jardim Paulista, São Paulo, SP, Brazil. HCV-RNA was extracted from serum and submitted to RT and nested PCR using standard procedures. Nested PCR products were submitted to cycle sequencing reactions without prior purification. Sequences were analyzed for genotype determination and the following frequencies were found: 64.9% (1,095) for genotype 1, 4.6% (78) for genotype 2, 30.2% (510) for genotype 3, 0.2% (3) for genotype 4, and 0.1% (2) for genotype 5. The frequencies of HCV genotypes were statistically different among Brazilian regions (P = 0.00017). In all regions, genotype 1 was the most frequent (51.7 to 74.1%), reaching the highest value in the North; genotype 2 was more prevalent in the Center-West region (11.4%), especially in Mato Grosso State (25.8%), while genotype 3 was more common in the South (43.2%). Genotypes 4 and 5 were rarely found and only in the Southeast, in São Paulo State. The present data indicate the need for careful epidemiological surveys throughout Brazil since knowing the frequency and distribution of the genotypes would provide key information for understanding the spread of HCV.
Background: COVID-19 in children is usually mild or asymptomatic, but severe and fatal paediatric cases have been described. The pathology of COVID-19 in children is not known; the proposed pathogenesis for severe cases includes immune-mediated mechanisms or the direct effect of SARS-CoV-2 on tissues. We describe the autopsy findings in five cases of paediatric COVID-19 and provide mechanistic insight into the mechanisms involved in the pathogenesis of the disease. Methods: Children and adolescents who died with COVID-19 between March 18 and August 15, 2020 were autopsied with a minimally invasive method. Tissue samples from all vital organs were analysed by histology, electron microscopy (EM), reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). Findings: Five patients were included, one male and four female, aged 7 months to 15 years. Two patients had severe diseases before SARS-CoV-2 infection: adrenal carcinoma and Edwards syndrome. Three patients were previously healthy and had multisystem inflammatory syndrome in children (MIS-C) with distinct clinical presentations: myocarditis, colitis, and acute encephalopathy with status epilepticus. Autopsy findings varied amongst patients and included mild to severe COVID-19 pneumonia, pulmonary microthrombosis, cerebral oedema with reactive gliosis, myocarditis, intestinal inflammation, and haemophagocytosis. SARS-CoV-2 was detected in all patients in lungs, heart and kidneys by at least one method (RT-PCR, IHC or EM), and in endothelial cells from heart and brain in two patients with MIS-C (IHC). In addition, we show for the first time the presence of SARS-CoV-2 in the brain tissue of a child with MIS-C with acute encephalopathy, and in the intestinal tissue of a child with acute colitis. Interpretation: SARS-CoV-2 can infect several cell and tissue types in paediatric patients, and the target organ for the clinical manifestation varies amongst individuals. Two major patterns of severe COVID-19 were observed: a primarily pulmonary disease, with severe acute respiratory disease and diffuse alveolar damage, or a multisystem inflammatory syndrome with the involvement of several organs. The presence of SARS-CoV-2 in several organs, associated with cellular
The saliva of patients with COVID-19 has a high SARS-CoV-2 viral load. The risk of spreading the virus is high, and procedures for viral load reduction in the oral cavity are important. Little research to date has been performed on the effect of mouthwashes on the salivary SARS-CoV-2 viral load. This pilot randomized single-center clinical trial investigated whether three types of mouthwash with solutions containing either 0.075% cetylpyridinium chloride plus 0.28% zinc lactate (CPC þ Zn), 1.5% hydrogen peroxide (HP), or 0.12% chlorhexidine gluconate (CHX) reduce the SARS-CoV-2 viral load in saliva at different time points. Sixty SARS-CoV-2-positive patients were recruited and randomly partitioned into a placebo (oral rinsing with distilled water) group and other groups according to the type of mouthwash. Saliva samples were collected from the participants before rinsing (T0), immediately after rinsing (T1), 30 min after rinsing (T2), and 60 min after rinsing (T3). The salivary SARS-CoV-2 viral load was measured by qRT-PCR assays. Rinsing with HP and CPC þ Zn resulted in better reductions in viral load, with 15.8 AE 0.08-and 20.4 AE 3.7-fold reductions at T1, respectively. Although the CPC þ Zn group maintained a 2.6 AE 0.1-fold reduction at T3, this trend was not observed for HP. HP mouthwash resulted in a significant reduction in the SARS-CoV-2 viral load up to 30 min after rinsing (6.5 AE 3.4). The CHX mouthwash significantly reduced the viral load at T1, T2, and T3 (2.1 AE 1.5-, 6.2 AE 3.8-, and 4.2 AE 2.4-fold reductions, respectively). In conclusion, mouthwash with CPC þ Zinc and CHX resulted in significant reductions of the SARS-CoV-2 viral load in saliva up to 60 mins after rinsing, while HP mouthwash resulted in a significant reduction up to 30 mins after rinsing. Despite this transitory effect, these results encourage further studies and suggest that these products could be considered as risk-mitigation strategies for patients infected with SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.