Polybia-MP1 (MP1) is a bioactive host-defense peptide with known anticancer properties. Its activity is attributed to excess serine (phosphatidylserine (PS)) on the outer leaflet of cancer cells. Recently, higher quantities of phosphatidylethanolamine (PE) were also found at these cells' surface. We investigate the interaction of MP1 with model membranes in the presence and absence of POPS (PS) and DOPE (PE) to understand the role of lipid composition in MP1's anticancer characteristics. Indeed we find that PS lipids significantly enhance the bound concentration of peptide on the membrane by a factor of 7-8. However, through a combination of membrane permeability assays and imaging techniques we find that PE significantly increases the susceptibility of the membrane to disruption by these peptides and causes an order-of-magnitude increase in membrane permeability by facilitating the formation of larger transmembrane pores. Significantly, atomic-force microscopy imaging reveals differences in the pore formation mechanism with and without the presence of PE. Therefore, PS and PE lipids synergistically combine to enhance membrane poration by MP1, implying that the combined enrichment of both these lipids in the outer leaflet of cancer cells is highly significant for MP1's anticancer action. These mechanistic insights could aid development of novel chemotherapeutics that target pathological changes in the lipid composition of cancerous cells.
Inflammatory peptides display different types of post-transcriptional modifications, such as C-terminal amidation, that alter their biological activity. Here we describe the structural and molecular dynamics features of the mast cell degranulating peptide, eumenine mastoparan-AF (EMP-AF-NH(2)), found in the venom of the solitary wasp, and of its carboxyl-free C-terminal form (EMP-AF-COO(-)) characterized by a reduced activity. Circular dichroism indicates that both peptides switch from a random coil conformation in water to a helical structure in TFE and SDS micelles. NMR data, in 30% TFE, reveal that the two peptides fold into an alpha-helix spanning most of their length, while they differ in terms of molecular rigidity. To understand the origins of the conformational flexibility observed in the case of EMP-AF-COO(-), a 5 ns MD simulation was carried out for each peptide, in an explicit water/TFE environment. The results show that the two peptides differ in an H-bond between Leu14 NH(2) and the backbone carbonyl of Ile11. The loss of that H-bond in EMP-AF-COO(-) leads to a significant modification of its structural dynamics. In fact, as evidenced by essential dynamics analysis, while EMP-AF-NH(2) exists mainly as a rigid structure, EMP-AF-COO(-) presents two helical stretches that fluctuate in some sort of independent fashion. We conclude that the diverse biological activity of the two peptides is not simply due to the reduction of the net positive charge, as generally suggested, but also to a structural perturbation of the amphipathic alpha-helix that affects their ability to perturb the cell membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.