The increasing number of health-data breaches is creating a complicated environment for medical-data sharing and, consequently, for medical progress. Therefore, the development of new solutions that can reassure clinical sites by enabling privacy-preserving sharing of sensitive medical data in compliance with stringent regulations (e.g., HIPAA, GDPR) is now more urgent than ever. In this work, we introduce MedCo, the first operational system that enables a group of clinical sites to federate and collectively protect their data in order to share them with external investigators without worrying about security and privacy concerns. MedCo uses (a) collective homomorphic encryption to provide trust decentralization and end-to-end confidentiality protection, and (b) obfuscation techniques to achieve formal notions of privacy, such as differential privacy. A critical feature of MedCo is that it is fully integrated within the i2b2 (Informatics for Integrating Biology and the Bedside) framework, currently used in more than 300 hospitals worldwide. Therefore, it is easily adoptable by clinical sites. We demonstrate MedCo's practicality by testing it on data from The Cancer Genome Atlas in a simulated network of three institutions. Its performance is comparable to the ones of SHRINE (networked i2b2), which, in contrast, does not provide any data protection guarantee.
Recent cryptographic approaches for private distributed learning, e.g., [119], [42], not only have limited ML functionalities, i.e., regularized or generalized linear models, but also employ traditional encryption schemes that make them vulnerable to post-quantum attacks. This should be cautiously considered, as recent advances in quantum computing [47], [87], [105], [116], increase the need for deploying quantum-resilient cryptographic schemes that eliminate Abstract-In this paper, we address the problem of privacypreserving training and evaluation of neural networks in an N-party, federated learning setting. We propose a novel system, POSEIDON, the first of its kind in the regime of privacy-preserving neural network training. It employs multiparty lattice-based cryptography to preserve the confidentiality of the training data, the model, and the evaluation data, under a passive-adversary model and collusions between up to N − 1 parties. To efficiently execute the secure backpropagation algorithm for training neural networks, we provide a generic packing approach that enables Single Instruction, Multiple Data (SIMD) operations on encrypted data. We also introduce arbitrary linear transformations within the cryptographic bootstrapping operation, optimizing the costly cryptographic computations over the parties, and we define a constrained optimization problem for choosing the cryptographic parameters. Our experimental results show that POSEIDON achieves accuracy similar to centralized or decentralized non-private approaches and that its computation and communication overhead scales linearly with the number of parties. POSEIDON trains a 3-layer neural network on the MNIST dataset with 784 features and 60K samples distributed among 10 parties in less than 2 hours.
Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics. Using our system, we accurately and efficiently reproduce two published centralized studies in a federated setting, enabling biomedical insights that are not possible from individual institutions alone. Our work represents a necessary key step towards overcoming the privacy hurdle in enabling multi-centric scientific collaborations.
Current solutions for privacy-preserving data sharing among multiple parties either depend on a centralized authority that must be trusted and provides only weakest-link security (e.g., the entity that manages private/secret cryptographic keys), or leverage on decentralized but impractical approaches (e.g., secure multi-party computation). When the data to be shared are of a sensitive nature and the number of data providers is high, these solutions are not appropriate. Therefore, we present UnLynx, a new decentralized system for efficient privacypreserving data sharing. We consider m servers that constitute a collective authority whose goal is to verifiably compute on data sent from n data providers. UnLynx guarantees the confidentiality, unlinkability between data providers and their data, privacy of the end result and the correctness of computations by the servers. Furthermore, to support differentially private queries, UnLynx can collectively add noise under encryption. All of this is achieved through a combination of a set of new distributed and secure protocols that are based on homomorphic cryptography, verifiable shuffling and zero-knowledge proofs. UnLynx is highly parallelizable and modular by design as it enables multiple security/privacy vs. runtime tradeoffs. Our evaluation shows that UnLynx can execute a secure survey on 400,000 personal data records containing 5 encrypted attributes, distributed over 20 independent databases, for a total of 2,000,000 ciphertexts, in 24 minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.