Type of publication:Peer reviewed journal article Isolated footings are reinforced concrete elements whose flexural and punching shear strengths are usually governing for their design. In this work, both failure modes and their interaction are investigated by means of the kinematical theorem of limit analysis. Previous works in this domain have traditionally considered failure mechanisms based on a vertical penetration of a punching cone. In this work, two enhanced failure mechanisms are investigated considering not only a vertical penetration of the punching cone, but also a rotation of the outer part of the footing, allowing to consider the role of both bottom and top reinforcements on the failure load. A rigid-plastic behavior with a Mohr-Coulomb yield criterion is considered for the concrete and a uniaxial rigid-plastic behavior is assumed for the reinforcement bars. The analysis shows that a smooth transition between flexural and punching shear failure occurs, corresponding to a flexural-shear regime. With respect to the punching shear failure regime, it is shown that the top reinforcement might play an important role (a fact usually neglected by previous investigations). Simplified formulations, allowing easy calculation of the load carrying capacity of footings, are derived and compared to the solutions according to limit analysis. Both theoretical and approximated solutions are finally compared with experimental results, showing consistent agreement.
Despite the intensive efforts dedicated in the last decades to better understanding punching shear failures, there is still no consensus on the mechanics governing this phenomenon and on how to implement it within a physical approach. In this paper, an analysis of recent detailed measurements on the kinematics and crack development associated with punching failures is presented. This allows classifying the observed cracks by their nature and to address their interaction and development on the eventual punching failure surface. On this basis, a complete mechanical model is formulated consistently with the principles of the critical shear crack theory (CSCT). This model generalizes previous approaches based on the CSCT by accounting for the various crack types and failure modes as well as for their associated kinematics. The generality of the model is verified by extensive comparisons to test data, showing accurate and consistent agreement. Its results are eventually used to investigate the role of the various potential sheartransfer actions as well as the pertinence of the assumptions adopted to simplify the CSCT by describing its failure criterion with analytical expressions.
Punching shear is usually the governing failure criterion when selecting the depth of reinforced concrete footings. Despite the fact that large experimental programmes aimed at the punching strength of slender flat slabs have been performed in the past, only a few experimental campaigns on full‐scale compact reinforced concrete footings can be found in the literature. This paper presents the results of an experimental programme including eight reinforced concrete footings with a nominal thickness of 550 mm. These experiments investigated the influence of column size, member slenderness and the presence of compression and shear reinforcement. The tests were performed using an innovative test setup to ensure a uniform soil pressure. The experimental results show that slenderness influences the punching shear strength as well as the effectiveness of the shear reinforcement. The experiments also show that an important interaction occurs between bending and shear for high levels of shear force near the column (the typical case of compact footings or members with large amounts of shear reinforcement). Different continuous measurements recorded during the experimental tests allow a complete description of the kinematics and strains at failure. On that basis, experimental evidence is obtained showing that crushing of the concrete struts near the column is the phenomenon that triggers the punching failure of compact footings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.