a b s t r a c tFlow cytometry is often used for viability and vitality assessment in bacteria and yeasts. However, its application to the study of fungal spore development is uncommon, probably due to the difficulties in successfully staining these cells.In the current study, we used flow cytometry for the first time to assess the effects of a disinfection treatment on the survival, growth and metabolic activity of fungal spores (Penicillium chrysogenum, Aspergillus nidulans and Aspergillus niger) submitted to gamma radiation (0e15 kGy). The Forward and Side-Scatter parameters of the cytometer were used to assess the differences in size and complexity of particles. Furthermore, two fluorescent dyes were used: Propidium Iodide to assess the membrane integrity and spore viability, in a culture-independent procedure; and Dihydroethidium to measure the changes in metabolic activity of irradiated spores in their first 10 h of growth in a liquid culture medium.Our results support that flow cytometry is a valuable tool in assessing different biological parameters and biocide effects, as it allowed accurate determination of the viability, growth and metabolic activity of gamma-irradiated spores. The fluorescence of Propidium Iodide was 5e7Â more intense in unviable spores. The Dihydroethidium fluorescence increase was associated with faster growth. Control and low radiation doses allowed the germination and growth of spores, while higher doses led to growth inhibition and lower fluorescence.
Fungi are known to contribute to the development of drastic biodeterioration of historical and valuable cultural heritage materials. Understandably, studies in this area are increasingly reliant on modern molecular biology techniques due to the enormous benefits they offer. However, classical culture dependent methodologies still offer the advantage of allowing fungal species biodeteriorative profiles to be studied in great detail. Both the essays available and the results concerning distinct fungal species biodeteriorative profiles obtained by amended plate essays, remain scattered and in need of a deep summarization. As such, the present work attempts to provide an overview of available options for this profiling, while also providing a summary of currently known fungal species putative biodeteriorative abilities solely obtained by the application of these methodologies. Consequently, this work also provides a series of checklists that can be helpful to microbiologists, restorers and conservation workers when attempting to safeguard cultural heritage materials worldwide from biodeterioration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.