Neste artigo, é apresentado uma proposta de plataforma de teste para implementações dequatro versões do extrator de característica descritor de cor dominante definido pelo padrão MPEG-7. A plataforma simula a tarefa de recuperação de imagem baseada em conteúdo e avalia tanto a qualidade das respostas fornecidas quanto o tempo médio de execução dos algoritmos. Foram conduzidos experimentos utilizando três conjuntos de dados reais e os resultados experimentais demonstram que a escolha da implementação do extrator de característica impactam tanto na etapa de extração dos vetores de características quanto no tempo de consulta.
A complexidade dos dados aumenta conforme as aplicações vão evoluindo, sendo sempre necessário desenvolver novas técnicas para o seu armazenamento e recuperação. Neste sentido, as buscas por similaridade têm se mostrado uma das melhores formas de se comparar/recuperar dados complexos. Contudo, ao serem aplicados em grandes conjuntos de dados, os operadores fundamentais de busca por similaridade têm sua expressividade reduzida, e os elementos recuperados tendem a ser muito similares entre si. Para solucionar este problema, vários pesquisadores têm considerado a inclusão de diversidade nas buscas por similaridade. O objetivo deste tipo de busca é encontrar um conjunto de elementos que sejam similares ao elemento de consulta ao mesmo tempo que sejam o mais diversos possível entre si. Enquanto uma busca por similaridade pode ser feita de forma simples, uma busca por similaridade com diversidade tende a ser mais complexa, pois se torna necessário comparar os elementos da resposta entre si e, portanto executar um número maior de comparações, o que torna a busca mais lenta e custosa. Na literatura são encontradas abordagens que visam reduzir os custo dessas buscas, uma delas é a de selecionar elementos candidatos. Neste caso, ao invés de utilizar todos elementos do conjunto de dados, apenas uma pequena amostra do conjunto é de fato utilizada pelos algoritmos de diversidade. O foco principal dessa dissertação é desenvolver abordagens de seleção de candidatos que sejam escaláveis e que permitam selecionar elementos candidatos de alta qualidade. Neste sentido, são apresentadas: uma nova estrutura de indexação baseada em particionamento hierárquico de dados; e três abordagens de seleção de elementos candidatos, que utilizam o particionamento gerado pela estrutura para encontrar de forma rápida elementos candidatos adequados.Palavras-chave: Buscas por similaridade, Busca por similaridade com diversidade, Busca em espaços métricos, Métodos de acesso métrico.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.